
Non-Blocking Interpolation Search Trees with
Doubly-Logarithmic Running Time

Trevor Brown
University of Waterloo

Canada
me@tbrown.pro

Aleksandar Prokopec
Oracle Labs
Switzerland

aleksandar.prokopec@gmail.com

Dan Alistarh
Institute of Science and Technology

Austria
dan.alistarh@ist.ac.at

Abstract
Balanced search trees typically use key comparisons to guide
their operations, and achieve logarithmic running time. By
relying on numerical properties of the keys, interpolation
search achieves lower search complexity and better perfor-
mance. Although interpolation-based data structures were
investigated in the past, their non-blocking concurrent vari-
ants have received very little attention so far.
In this paper, we propose the first non-blocking imple-

mentation of the classic interpolation search tree (IST) data
structure. For arbitrary key distributions, the data structure
ensures worst-case O(logn + p) amortized time for search,
insertion and deletion traversals. When the input key distri-
butions are smooth, lookups run in expectedO(log logn +p)
time, and insertion and deletion run in expected amortized
O(log logn + p) time, where p is a bound on the number
of threads. To improve the scalability of concurrent inser-
tion and deletion, we propose a novel parallel rebuilding
technique, which should be of independent interest.

We evaluate whether the theoretical improvements trans-
late to practice by implementing the concurrent interpola-
tion search tree, and benchmarking it on uniform and non-
uniform key distributions, for dataset sizes in the millions
to billions of keys. Relative to the state-of-the-art concur-
rent data structures, the concurrent interpolation search tree
achieves performance improvements of up to 15% under
high update rates, and of up to 50% under moderate update
rates. Further, ISTs exhibit up to 2× less cache-misses, and
consume 1.2 − 2.6× less memory compared to the next best
alternative on typical dataset sizes. We find that the results

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PPoPP ’20, February 22–26, 2020, San Diego, CA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6818-6/20/02. . . $15.00
https://doi.org/10.1145/3332466.3374542

are surprisingly robust to distributional skew, which sug-
gests that our data structure can be a promising alternative
to classic concurrent search structures.

CCS Concepts • Theory of computation → Concur-
rent algorithms; Shared memory algorithms; •Computing
methodologies→ Concurrent algorithms;

Keywords concurrent data structures, search trees, inter-
polation, non-blocking algorithms

1 Introduction
Efficient search data structures are critical in practical set-
tings such as databases, where the large amounts of under-
lying data are usually paired with high search volumes, and
with high amounts of concurrency on the hardware side,
via tens or even hundreds of parallel threads. Consequently,
there has been a significant amount of research on efficient
concurrent implementations of search data structures.

For search data structures supporting predecessor queries,
which are the focus of this work, such as binary search trees
(BSTs) or balanced search trees, efficient implementations
have been well researched and are relatively well understood,
e.g. [9, 13, 22, 36]. However, these classic search data struc-
tures are subject to the fundamental logarithmic complexity
thresholds (in the number of keys n), even in the average
case, which limits their performance for large key sets, in the
order of millions or even billions of keys. In the sequential
case, elegant and non-trivial techniques have been proposed
to reduce average-case complexity, by leveraging properties
of the key space, or of the key distribution. With one notable
exception [37], these techniques are significantly less well
understood for concurrent implementations.

This paper revisits this area, and provides the first efficient,
non-blocking concurrent implementation of an interpolation
search tree data structure [34], called the C-IST. The C-IST is
dynamic, in that it supports concurrent searches, insertions
and deletions. Interpolation search trees, presented in the
next section, have amortized worst-case O(logn) time for
standard operations, but achieveO(log logn) expected amor-
tized time complexity for insert and delete, and O(log logn)
expected time for search, by leveraging smoothness proper-
ties of the key distribution [34]. Our concurrent implemen-
tation preserves these properties with high probability.

276

https://www.acm.org/publications/policies/artifact-review-badging/#functional
https://www.acm.org/publications/policies/artifact-review-badging/#available
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3332466.3374542&domain=pdf&date_stamp=2020-02-19

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Trevor Brown, Aleksandar Prokopec, and Dan Alistarh

To ensure correctness, non-blocking progress, and scal-
ability in the concurrent setting, we introduce several new
techniques relative to sequential ISTs. Specifically, our con-
tributions are as follows:

• We describe the first non-blocking concurrent inter-
polation search tree (C-IST) based on atomic compare-
and-swap (CAS) instructions (Section 2), with expected
lookup time O(log logn + p), and expected amortized
O(log logn + p) time for insert and delete.

• We design a parallel, non-blocking rebuilding algo-
rithm to provide fast and scalable periodic rebuilding
for C-ISTs (Section 3). We believe that this technique
is applicable to other concurrent data structures that
require rebuilding.

• We prove the correctness, non-blocking and complex-
ity properties of the C-IST (Section 4).

• We provide a C-IST implementation in C++, and com-
pare its performance against concurrent (a,b)-trees [13],
Natarajan andMittal’s concurrent BSTs [36], and Bron-
son’s concurrent AVL trees [10] (Section 5). We report
performance improvements of 15% − 50% compared
to (a,b)-trees (the prior best-performing concurrent
search tree) on large datasets, and improvements of
up to 3.5× compared to the other concurrent trees, de-
pending on the proportion of updates. We also analyze
the average depth and cache-miss behavior, present a
breakdown of the execution time, show the impact of
the parallel rebuilding algorithm, and compare mem-
ory footprints.

2 Concurrent Interpolation Search Tree
2.1 Examples and Overview
We illustrate how concurrent interpolation search trees work
using several examples. Examine the first tree in the follow-
ing figure. Each inner node consists of a set of d pointers to
child nodes, and d − 1 keys that are used to drive the search.
We say that the node’s degree is d . The top node usually has
the highest degree, and the degree of a node decreases as it
gets deeper in the tree (explained precisely below). The tree
is external, meaning that the keys are stored in the leaf nodes.
The illustration shows a subset of nodes – the missing nodes
are represented with · · · symbols.

root
 ...

...

k0 k1

k2

 ..
..

ki

..

...

...

kj

kj < km

km

km

CAS

root
 ...

...

k0 k1

k2

 ..
..

ki

..

...

...

kj km

km

kj kj

kiki

Consider the task of inserting a key km , such that kj <
km < kl , where kj and kl are existing keys in the tree. The
figure shows a tree in which kj is contained in a leaf node
on the bottom. Insertion finds the leaf corresponding to kj ,

such that km is the successor of kj , and then allocates a new
inner node that holds both kj and km . Finally, the old pointer
in the parent is atomically changed with a CAS instruction
to point to the new node.

Without rebalancing, the tree can become arbitrarily deep.
Therefore, insertion must periodically rebalance parts of the
tree. The following figure shows the tree after inserting an
additional key kn , such that ki < kj < km < kn . The subtree
at the bottom, which contains the keys ki , kj , km and kn ,
is sufficiently imbalanced, and it should be replaced with
a more balanced tree. Rebalancing creates a new subtree
that contains the same set of keys. After rebalancing, the
subtree consists of a single inner node of degree 4, as shown
on the right. Note that deletions also periodically rebalance
the subtrees.

 ...
...k0 k1 k2

kj

...

kj

km

knkm

knki

 ...
...k0 k1 k2

km

...

km

kj

knkj

kn

ki

There are several challenges with this making this ap-
proach concurrent. First, concurrent modifications and re-
balancing must correctly synchronize so that all operations
remain non-blocking, while searches remain wait-free. Sec-
ond, the rebalancing of any subtree must not compromise
the scalability of the other operations. Finally, concurrent
rebalancing must, when the probability distribution of the
input keys is smooth [34], ensure that the operations run in
amortized O(log logn) time.

2.2 Data Types
The concurrent interpolation search tree consists of the data
types shown in Figure 1. The IST data type represents the in-
terpolation search tree with the single member root, which
points to the root node. Initially, the root node points to an
empty leaf node, whose type is Empty. The Single data
type represents a leaf node with a single key and an associ-
ated value, and the Inner data type represents inner nodes,
as illustrated on the right of Figure 1.
In addition to holding the search keys, and the pointers

to the child nodes, the Inner data type contains the node’s
degree, and a field called initSize, which contains the
number of keys that were in the corresponding subtree when
this node was created. Apart from the child pointers, these
fields are set on creation, and not subsequently modified.
Inner also contains two volatile fields, count and status,

which are used to coordinate rebuilding. The count field
holds the number of updates that were performed in the
subtree rooted at this node since it was created. The status
field consists of an integer and two booleans – it is initially
zero, and then changes to a non-zero value to indicate that
this node will be replaced during a rebuilding operation.

277

Non-Blocking Interpolation Search Trees PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

struct IST is
root: Node

struct Single: Node is
key: KeyType
val: ValType

struct Inner: Node is
initSize: int
degree: int
keys: KeyType[]
children: Node[]
status: [int, bool, bool]
count: int

struct Empty: Node is

struct Rebuild: Node is
target: Inner
parent: Inner
index: int

root
 ...

...

Inner

k0 k1

k2

 ..
..

kj

...

Single

...

...

...

 ..
..

ki

 ..
..

Figure 1. Data Types

The Rebuild data type contains information about a
subtree-rebuilding operation. It contains a pointer called
target to the root of the subtree to rebuild, a pointer to its
parent, and the index of the target in the parent node’s
array of child pointers. The status field and the Rebuild
type are further explained in Section 2.4.
To perform correctly, IST operations must maintain cer-

tain invariants – informally, these invariants state that there
must be a unique, acyclic path to any key, and that the nodes
cover disjoint key intervals. They are formally defined below.

Invariant 1 (Key presence). For any key k reachable in the

IST I, there exists exactly one path of the form I
root
→ n0

children[i0]
→ (n1 | r1

target
→ n1)

children[i1]
→ . . .

children[im−1]
→

(nm | rm
target
→ nm), where nm holds the key k, rm is a

Rebuild node, and | is a choice between two patterns.

Definition 2.1 (Cover). A root node n covers the interval
⟨−∞,∞⟩. Given an inner node n of degree d that covers
the interval [a,b⟩, and holds the keys k0,k1, . . . ,kd−2 in its
keys array, its child n.children[i] covers the interval
[ki−1,ki ⟩, where we define k−1 = a and kd−1 = b.

Definition 2.2 (Content). A node n contains a key k if and
only if the path from the root of the IST I to the leaf with
the key k contains the node n. An IST I contains a key k if
and only if the root contains the key k.

Invariant 2 (Search tree). If a node n covers [a,b⟩ and con-
tains a key k, then k ∈ [a,b⟩.

Invariant 3 (Acyclicity). There are no cycles in the interpo-
lation search tree.

Definition 2.3 (Has-key). Relation hasKey(I,k) holds if
and only if I satisfies the invariants, and contains the key k .

In the interpolation search tree, the degreed of a nodewith
cardinality n is Θ(

√
n). In an ideal IST, the degree of a node

with cardinality n is either ⌊
√
n⌋ or ⌈

√
n⌉, and the number

of keys in each of the node’s subtrees is Θ(
√
n), more specif-

ically, either ⌊
√
n⌋ or ⌈

√
n⌉. This ensures the O(log logn)

depth bound. An example of an ideal IST is shown below –
the root has degree Θ(

√
n), its children have degree Θ(4√n),

its grandchildren have degree Θ(8√n) and so on. The interpo-
lation search tree will generally not be ideal after a sequence
of insertion and deletion operations, but its subtrees are ideal
ISTs immediately after they get rebuilt.

 ...
...

k0 k1

k2

 ..
..

ki

kj

km

 ..
..

..
.

...

2.3 Insertion and Deletion
As illustrated in Section 2.1, an insertion searches the tree for
a Single or Empty node, and then replaces this node with
one or two new nodes. An Empty node is replaced with a
new Single node that contains the new key, and a Single
node is replaced with an inner node.
To track the amount of imbalance in each subtree, the

standard IST increments the count for all the inner nodes
that lead to that leaf, whenever a key is inserted or deleted
at that leaf [34]. Once some count reaches a threshold, the
corresponding subtree is rebuilt. Our C-IST implementation
avoids contention at the root by using a scalable, quiescently-
consistent multicounter [2] at the root.

Once rebalancing is triggered, subsequent insertions and
deletions in the corresponding subtree must fail, and help
complete the rebalancing before retrying. To ensure this,
the rebalancing sets the status field of all the nodes of the
target subtree. An insertion atomically checks the status
field of an inner node while replacing a child of the inner
node. We accomplish this with an atomic double-compare-
single-swap (DCSS) primitive, which takes two addresses,
two corresponding expected values, and one new value as
arguments, and behaves like a CAS that succeeds only if the
second address also matches its expected value. DCSS also
provides the wait-free DCSS_READ primitive, which can read
the fields that can be concurrently modified by a DCSS. Both
are efficiently implemented using single-word CASes [3, 28].
Insertion. Figure 2 shows the pseudocode for insert, which
traverses the C-IST starting at the root. An interpolation
search [38] is done at each node to determine the index of
the next child pointer for the given key. This search uses the
linear interpolation between the node’s minimum and maxi-
mum keys to estimate the index (in the node’s array of keys)
to which the specified key belongs, and does a linear search
thereafter. Since the keys array does not change after the
creation of an Inner node, interpolationSearch has a
sequential implementation, not shown here.

278

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Trevor Brown, Aleksandar Prokopec, and Dan Alistarh

1 procedure insert(ist, key, val)
2 path = [] // Stack that saves the path.
3 n = ist.root
4 while true
5 index = interpolationSearch(key, n)
6 child = DCSS_READ(n.children[index])
7 if child is Inner
8 n = child
9 path.push([child, index])
10 else if child is Empty | Single
11 r = createFrom(child, key, val)
12 result =
13 DCSS(n.children[index], child, r, n.status, [0,⊥,⊥])
14 if result == FAILED_MAIN_ADDRESS
15 continue // Retry from the same n.
16 else if result == FAILED_AUX_ADDRESS
17 return insert(ist, key, val) // Retry from the root.
18 else
19 for each [n, index] in path
20 FETCH_AND_ADD(n.count, 1)
21 parent = ist.root
22 for each [n, index] in path
23 count = READ(n.count)
24 if count >= REBUILD_THRESHOLD * n.initSize
25 rebuild(n, parent, index)
26 break // exit for
27 parent = n
28 return true
29 else if child is Rebuild
30 helpRebuild(child)
31 return insert(ist, key, val) // Retry from the root.

Figure 2. Insert Operation

Next, insert checks the type of the child node. If child
is an inner node, then insert continues the traversal, and at
the same time adds the child to the list called path. This list
is used to update the counts, as explained shortly. If child is
an Empty or a Single node, then insert replaces it with a
new node r with one or two keys, respectively, allocated in
the createFrom subroutine. The DCSS in line 13 inserts the
new node by changing n.children[index] from child
to r only if n.status == [0,⊥,⊥].
The DCSS in line 13 fails when n.status , [0,⊥,⊥],

and returns the FAILED_AUX_ADDRESS value, which indi-
cates that the node is a part of an ongoing a rebuild. In
this case, insert restarts from the root to find the Rebuild
node, and help complete the rebuild. The DCSS could also fail
if n.children[index] , child, indicating that another
insert or delete or rebuilding operation modified the
same location. In this case, insert restarts from the same
n. If the DCSS is successful, then insert increments the
count fields with the FETCH_AND_ADD in line 20.
Finally, the insert searches the ancestors in path for

the highest node whose count reached the threshold. The
threshold is checked in line 24, where REBUILD_THRESHOLD
is set to 0.25 (explained in Section 4 of the corresponding
tech report [52]). If such a node exists, then insert calls
rebuild to recreate the respective subtree. As explained in
Section 2.4, rebuild inserts a Rebuild node into the IST.

When other updates see this node, they help complete the
rebuild before proceeding.
Deletion. The delete either replaces a Single nodewith a
new Empty node, or does not change the data structure if the
key is not present. It is almost identical to insert – the main
difference is that when child is an Empty node, delete
simply returns false, and when child is a Single, instead
of calling createFrom, the node is replaced an Empty if the
keys match. The deletion does not shrink Inner nodes –
while some Empty nodes can accumulate in the tree, then
the rebuilding operations eventually remove them. With our
chosen threshold, at most 25% of all nodes can be Empty.

2.4 Partial Rebuilding
When insertion or deletion detects that a subtree rooted at
a node tarдet (henceforth, the “target subtree”) has become
sufficiently imbalanced, it rebuilds the subtree, as shown in
Figure 3. Rebuilding has four steps. First, a thread announces
the intention by creating a Rebuild descriptor, and inserts
the descriptor between the tarдet and its parent . Second,
the thread does a preorder traversal of the subtree, and sets
a bit in the status field of each node to prevent further
updates. Third, the thread creates an ideal IST (rooted at
ideal) using the old subtree’s keys (rooted at tarдet). Finally,
the old subtree is replaced with the new subtree in the parent.

32 procedure rebuild(node, p, i)
33 op = new Rebuild(node, p, i)
34 result = DCSS(p.children[i], node, op, p.status, [0,⊥,⊥])
35 if result == SUCCESS then helpRebuild(op)
36
37 procedure helpRebuild(op)
38 keyCount = markAndCount(op.target)
39 ideal = createIdeal(op.target, keyCount)
40 p = op.parent
41 DCSS(p.children[op.index], op, ideal, p.status, [0,⊥,⊥])
42
43 procedure markAndCount(node)
44 if node is Empty then return 0
45 if node is Single then return 1
46 if node is Rebuild then return markAndCount(op.target)
47 // node is Inner
48 CAS(node.status, [0,⊥,⊥], [0,⊥,⊤])
49 keyCount = 0
50 for index in 0 until length(node.children)
51 child = READ(node.children[index])
52 if child is Inner then
53 [count, finished, started] = READ(child.status)
54 if finished then keyCount += count
55 else keyCount += markAndCount(child)
56 else if child is Single then keyCount += 1
57 CAS(node.status, [0,⊥,⊤], [keyCount,⊤,⊤])
58 return keyCount

Figure 3. Rebuild Operation

Implementation. In the first step, the rebuild procedure
creates the Rebuild descriptor object, and announces it
with the DCSS in line 34. If this DCSS is not successful, then
either there is another rebuild in some ancestor, or another

279

Non-Blocking Interpolation Search Trees PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

struct Rebuild: Node is
target: Inner
newTarget: Inner
parent: Inner
index: int

struct Inner: Node is
initSize: int
degree: int
keys: KeyType[]
children: Node[]
status: [int, bool, bool]
count: int
nextMark: int

Figure 4.Modified Data Types for Collaborative Rebuilding

thread concurrently started the rebuild at the same node –
in both cases, the current thread can abort the rebuild.

If the announcement is successful, rebuilding continues in
the helpRebuild subroutine. If other threads need to up-
date the respective subtree, then they observe the Rebuild
node, and help by also calling helpRebuild. The call to
markAndCount traverses the subtree, and sets the status
field of each inner node to [0,⊥,⊤] with the CAS in line 48.
At the same time, markAndCount counts the number of keys
below each node, and, once all the children are traversed, it
stores the total key count in the higher bits of the status
field in line 57. The count allows computing the node degrees
in the new subtree. Note that, since the threads compete to
set the same value in status, the success of these two CASes
does not need to be checked – exactly one thread succeeds.

The createIdeal creates an ideal IST, as defined in Sec-
tion 2.2, and ensures that the degree of each node is ≈

√
N ,

where N is the number of keys in that node’s subtree. We do
not show its pseudocode, since it involves no concurrency.
We refer the reader to e.g. [34] for the exact description of
this procedure.

In the last step, the old subtree is replacedwith the new one
by the DCSS in line 41. If this DCSS fails, then either another
thread finished the rebuild, or another rebuild started in
some ancestor, so no further action is necessary.

3 Concurrent Interpolation Search Tree
with Collaborative Rebuilding

The basic rebuilding procedure, described in Section 2.3,
suffers from a scalability bottleneck when a lot of threads
concurrently modify the IST. Since multiple threads compete
to mark the old subtree in the markAndCount procedure,
and multiple threads create the same new subtree in the
createIdeal procedure from Figure 7, part of the work can
be duplicated due to contention. To address this, we designed
and implemented a collaborative rebuilding algorithm, in
which threads mark and rebuild the subtree in parallel.

3.1 Fast Collaborative Rebuilding
To enable threads to perform rebuilding collaboratively, we
make several changes in the algorithm. First, we replace
the markAndCount procedure with a new procedure called
markAndCountCollaborative, in which helpers attempt

43 procedure markAndCountCollaborative(node)
// ... same as markAndCount until line 48, but with
// recursive calls to markAndCountCollaborative ...

49 if node.degree > COLLABORATION_THRESHOLD
50 while true
51 index = FETCH_AND_ADD(node.nextMark, 1)
52 if index >= node.degree then break
53 markAndCountCollaborative(node.children[index])

// ... same as markAndCount from line 49, but with
// recursive calls to markAndCountCollaborative ...

Figure 5. The markAndCountCollaborative Procedure

to process different parts of the data structure in parallel,
and carefully avoid duplicating the work.
Second, we replace the call to createIdeal inside the

procedure helpRebuild in Figure 3 with a call to a new
procedure createIdealCollaborative, in which a new
root of the subtree is first created (which initially contains
only null-pointers) and announced. For this purpose, we add
the newTarget field to the Rebuild data type, as shown
in Figure 4, to store the root node of the new subtree. Each
null-pointer in the new root of the subtree represents a
“job” that a thread can perform by building the corresponding
subtree (and changing the null-pointer to point to this new
subtree). Of course, many of these jobs can be performed in
parallel. This way, until the new ideal IST is complete, the
newTarget node serves as a sort of lock-free work queue.
Finally, we add the nextMark field to Inner nodes, which
is used in collaborative marking.

These subtlety of these changes is to distributework among
threads while preserving lock-freedom, which mandates that
all work is done eventually, even if some threads block.
The collaborative rebuilding algorithm is illustrated in

Figure 7, which we explain in the following paragraphs.
Collaborative marking algorithm. Similar to the basic
algorithm from Section 2, the collaborative rebuilding al-
gorithm starts by setting the status field of all the nodes
in the subtree that must be rebuilt. The main difference in
the collaborative marking algorithm is that it allows the
helping threads to mark parts of the subtree in parallel.
The markAndCountCollaborative procedure, shown in
Fig. 5, starts by setting the low boolean of the status field,
and is the same as the basic markAndCount from Fig. 3 un-
til line 48. If the number of children of the node is larger
than the COLLABORATION_THRESHOLD value (experimen-
tally set to 48), the marking repetitively invokes the atomic
FETCH_AND_ADD instruction on the nextMark field, to get
the index of the next free child that can be recursivelymarked
(line 49). This allows multiple threads to concurrently mark
the distinct children, which reduces the memory contention.
The rest of the markAndCountCollaborative proce-

dure is exactly the same as the markAndCount procedure
from Fig. 3 after line 49. In particular, after executing the

280

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Trevor Brown, Aleksandar Prokopec, and Dan Alistarh

loop in lines 50-53 of Fig. 5, collaborative marking does an-
other pass through the node’s children array to help the
other threads that are slow. In this second pass (lines 50-55
of Fig. 3), the thread recursively marks those children whose
key-count was not yet computed. This second pass is neces-
sary to preserve lock-freedom – if any of the other threads
halts, the marking will complete in a finite number of steps.
Collaborativemarking example. The collaborative mark-
ing is illustrated in Fig. 7. The Rebuild object is first an-
nounced in Fig. 7A. At this point, the status fields of all
the inner nodes in the target subtree are set to [0,⊥,⊥]
(shown in the rightmost box of each node), indicating that
the marking has not started in any of those nodes. In Fig. 7B,
thread p executed FETCH_AND_ADD and decided to mark the
child at index 0, while threads q and r are marking children
at indices 1 and 3, respectively. Thread q has completed the
marking (indicated by the [2,⊤,⊤] in the status field of
the corresponding child), and can now help threads p and r
to complete the marking and set the key counts of their chil-
dren. In Fig. 7C, all the threads have finished marking, and
the target node has the status field set to [9,⊤,⊤]. At
this point, no more concurrent modifications of the target
subtree are possible, and target can be traversed without
synchronization for the purposes of creating a new subtree.
Collaborative building.After the target subtree ismarked,
and the total key-count is known, the algorithm allocates
the root node of the new subtree. Once again, if the key-
count is below the COLLABORATION_THRESHOLD, the entire
subtree is created without collaboration with the call to the
createIdeal procedure, in line 61 of Fig. 6. If the key-count
is above this level, a new root node is allocated in line 63.
The size of the children array is set to the square root of
the key-count. Notably, the degree field is initially set to 0,
but it is later used in line 76 to enable threads to coordinate
between the child slots that they work on, and is set to the
proper value by the time the rebuilding completes.

Once the root node of the new subtree is allocated, threads
compete to write it into the newTarget field of the Rebuild
object, in line 69. After the new root is announced, threads
atomically increment the degree field to select a child index
to work on, in lines 73-78. Upon acquiring an index, a thread
calls the rebuildAndSetChild procedure. This procedure
calculates the interval of keys from the original subtree for
the new child, and then calls createIdeal to create the
child tree. The createIdeal procedure is not shown due
to space reasons, but it is a straightforward traversal of the
original tree – since the original is effectively immutable,
no synchronization is necessary. After the new child is cre-
ated, the thread runs a DCSS in line 98 to write the child into
the array. If DCSS fails due to a change in the status field,
then this means that another rebuild operation is ocurring
higher in the tree. In this case, rebuildAndSetChild re-
turns false to the caller, allowing it to stop rebuilding early.

59 procedure createIdealCollaborative(op, keyCount)
60 if keyCount < COLLABORATION_THRESHOLD then
61 newTarget = createIdeal(op.target, keyCount)
62 else
63 newTarget = new Inner(
64 initSize = keyCount,
65 degree = 0, // Will be set to final value in line 76.

66 keys = new KeyType[⌊
√
keyCount⌋ - 1],

67 children = new Node[⌊
√
keyCount⌋],

68 status = [0, ⊥, ⊥], count = 0, nextMark = 0)
69 if not CAS(op.newTarget, null, newTarget) then
70 // Subtree root was inserted by another thread.
71 newTarget = READ(op.newTarget)
72 if keyCount < COLLABORATION_THRESHOLD then
73 while true
74 index = READ(newTarget.degree)
75 if index == length(newTarget.children) then break
76 if CAS(newTarget.degree, index, index + 1) then
77 if not rebuildAndSetChild(op, keyCount, index)
78 return newTarget
79 for index in 0 until length(newTarget.children)
80 child = READ(newTarget.children[index])
81 if child == null then
82 if not rebuildAndSetChild(op, keyCount, index)
83 return newTarget
84 return newTarget
85
86 procedure rebuildAndSetChild(op, keyCount, index)
87 // Calculate the key interval for this child, and rebuild.

88 totalChildren = ⌊
√
keyCount⌋

89 childSize = ⌊keyCount / totalChildren⌋
90 remainder = keyCount % totalChildren
91 fromKey = childSize * index + min(index, remainder)
92 childKeyCount = childSize + (index < remainder ? 1 : 0)
93 child = createIdeal(op.target, fromKey, childKeyCount)
94 if index < length(op.newTarget.keys)
95 key = findKeyAtIndex(op.target, fromKey)
96 WRITE(op.newTarget.keys[index], key)
97 // Set new child, check if failed due to status change.
98 result = DCSS(op.newTarget.children[index],
99 null, child, op.newTarget.status, [0, ⊥, ⊥])
100 return result != FAILED_AUX_ADDRESS

Figure 6. The createIdealCollaborative Procedure

Notably, the key is written non-conditionally into the keys
array in line 96, since potential helpers write the same value.

When the degree gets equal to the length of the children
array, it means that some thread had started creating a new
child at every entry of the array (moreover, some threads
could have already created a new child, and set an entry in
the children array to point to that new child). To guar-
antee lock-freedom, if a thread cannot increment degree
further, then it must help the slow threads complete their
own children. In lines 79-83, a thread checks the entries of
the children array, and helps rebuild the children at entries
whose value is still null. The rebuilding is completed once
all the entries are non-null.
Collaborative building example. The collaborative sub-
tree rebuilding is illustrated in Fig. 7D-G. After the target
subtree is marked, and is determined to have 9 keys in total,
the threads compete to announce the root of the new subtree
with a DCSS instruction in Fig. 7D. The newly announced

281

Non-Blocking Interpolation Search Trees PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

keys and pointers

parent

status

count started
finished

op
target
newTarget

0

0

0 00

0

null

0

0

2 00

2

p:DCSS

x

x

x
x

x
x

0

9

2 33

2

x

x

x
x

x
xx x

x

x

k1

k2 k3

k4 k5

k6

k7 k8

Empty node

k1

k2 k3

k4 k5

k6

k7 k8 k1

k2 k3

k4 k5

k6

k7 k8k9 k9 k9

helper thread q

threads finish markAndCount

0

9

2 33

2

x

x

x
x

x
xx x

x

x

k1

k2 k3

k4 k5

k6

k7 k8 k9

p:DCSS
0

newTarget

0

9

2 33

2

x

x

x
x

x
xx x

x

x

k1

k2 k3

k4 k5

k6

k7 k8 k9

0

thread p helper thread r

x

fields accessed by p’s DFS

0

k1 k2 k3

p:DCSS

p builds and inserts a new subtree

0

9

2 33

2

x

x

x
x

x
xx x

x

x

k1

k2 k3

k4 k5

k6

k7 k8 k9

fields accessed by q’s DFS

op op

op op

op
skipping this subtree
helper q does DFS,

0

k4 k5 k6

0

0

k1 k2 k3

q:DCSS

q builds and inserts a new subtree

0

k7 k8 k8

A B C

D E

F GAnother concurrent helper
builds the last subtree

p starts markAndCount

threads begin rebuilding subtreesp creates newTarget with
√

9 pointers

threads finish rebuilding subtrees

newTarget

0
p (or a helper) replaces op with newTarget

0

k4 k5 k6

0

0

k1 k2 k3

0

k7 k8 k8

op

· · ·

p:DCSS

Figure 7. Illustration of the collaborative rebuilding algorithm.

node has
√
9 = 3 entries, so each of its children will cover

9/
√
9 = 3 keys. In Fig. 7E, thread p acquired the index 0 of

the children array, and determined that it needs to collect
the keys k1, k2 and k3 of the original subtree (shown in gray).
Thread p allocated a new child node of size 3, and used DCSS
to enter that child into the children array. In Fig. 7F, an-
other thread had built and stored the child at index 2 of the
children array, while the thread q is the only thread that is
still working on the index 1. Helping threads can now enter
the lines 79-83 of the pseudocode in Fig. 6, and can compete
with the thread q to populate the index 1. In Fig. 7G, the
rebuilding is completed, and the threads compete to replace
the Rebuild object with the new, ideal subtree.

3.2 Lookups and Range Queries
The lookup subroutine, shown in Figure 8, is similar to the
insert. An interpolation search is repeated until reaching
an Empty or a Single node. If it reaches a Single node
that contains the specified key, it returns true. Otherwise, if
lookup encounters an Empty node or a Single node that
does not contain the specified key, it returns false.

If lookup encounters a Rebuild object, it simply follows
the target pointer to move to the next node, and contin-
ues traversal. Unlike the insert operation, lookup does
not help concurrent subtree rebuilding operations. Lookups
do not need to help rebuilding to ensure progress, and so

101 procedure lookup(ist, key)
102 n = ist.root
103 while true
104 if n is Inner then
105 index = interpolationSearch(key, n)
106 n = DCSS_READ(n.children[index])
107 else if n is Single then return n.k == key ? n.v : null
108 else if n is Empty then return null
109 else if n is Rebuild then n = n.target

Figure 8. Lookup Operation

they avoid the unnecessary overhead. Apart from its use of
DCSS_READ and the handling of Rebuild objects, lookup
is effectively a sequential interpolation tree search.
Range queries. In some applications it is useful to have
access to non-blocking range query operations, which re-
turn all of the keys in the data structure that intersect some
range [low,hiдh]. The IST could be augmented with support
for range query operations using, for example, the recently
introduced methodology of Arbel-Raviv and Brown [5].

4 Analysis
This section contains an outline of the correctness proofs
and the complexity analysis of the C-IST data structure. For
reasons of space, we only list the most important lemmas and

282

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Trevor Brown, Aleksandar Prokopec, and Dan Alistarh

Figure 9. Basic Operations Throughput, Higher is Better (NM, BCCO, ABTree, C-IST)

theorems. The full arguments are given in the full version of
this paper [17].

4.1 Safety, Linearizability and Lock-Freedom
To prove correctness, we associate the C-IST and its opera-
tions with the semantics of an abstract set A.
Definition 4.1 (Consistency). An C-IST I is consistent with
an abstract set A if and only if ∀k ∈ A⇔ hasKey(I,k).
By identifying the atomic instructions at which the cor-

responding abstract set A changes, we show that a C-IST
operation changes the corresponding set exactly once. At
the same time, we identify instructions that change the state
of the data structure, but not the state of the corresponding
abstract set. The linearizability proof follows naturally.
Theorem 4.2 (Safety). An C-IST I is always valid and consis-
tent with some abstract set A. C-IST operations are consistent
with the operational semantics of the abstract sets.

Corollary 4.3 (Linearizability). Lookup, insertion and dele-
tion operations are linearizable.

To show lock-freedom of the modification operations, we
show that, for any C-IST, only finitely many data structure
changes occur before the corresponding abstract set changes.
Lemma 4.4. There is a finite number of steps between any two
C-IST modifications, and there are finitely many consecutive
modifications that do not change the abstract set.

Theorem4.5 (Non-Blocking). Insertion and deletion are lock-
free, and lookup is wait-free.

4.2 Complexity
The complexity analysis for C-IST follows the argument for
sequential ISTs [34], with modifications due to the fact that
at any time there can be up to p threads that are concurrently
modifying the C-IST. The complete arguments can be found
in the additional material. In particular, the worst-case depth
bound is the following:

Lemma 4.6. Let p be the number of concurrent threads that
are modifying a C-IST. Worst-case depth of a C-IST that con-
tains n keys is O(p + logn).

In turn, a standard amortization argument implies the
following naive worst-case amortized bound:

Lemma4.7. Theworst-case amortized cost of insert and delete
operations, without including the cost of searching for the node
in the C-IST, is O(γ (p + logn)), where γ is a bound on the
average interval contention.

The above worst-case bound can probably be further tight-
ened. However, our main focus is on expected amortized
bounds, which allow us to go below Θ(logn). The following
holds for the expected amortized cost of updates:

Lemma 4.8. Let µ be a probability density with a finite sup-
port [a,b]. The expected total cost of processing a sequence of
n µ-random insertions and uniformly random deletions into
an initially empty C-IST is O(n(log logn + p)γ), where γ is a
bound on average interval contention.

We note that, for worst-case schedules, the value of γ can
be Θ(p), although in practice we expect it to be lower. For
searches, the following holds:

Lemma 4.9. Let µ be a smooth probability density, as defined
Mehlkorn and Tsakalidis [34], for a parameter α , such that
1
2 ≤ α < 1. The expected search time in a µ-random IST of size
n is O(log logn + p).

5 Evaluation
We implemented the concurrent IST in C++, and compared it
against several state of the art concurrent data structures. We
ran the benchmarks on a NUMA system with four Intel Xeon
Platinum 8160 3.7GHz CPUs, each of which has 24 cores and
48 hardware threads. Within each CPU, cores share a 33MB
LLC, and cores on different CPUs do not share any caches.
The system has 384GB of RAM, and runs Ubuntu Linux
18.04.1 LTS. Our code was compiled with GCC 7.4.0-1, with

283

Non-Blocking Interpolation Search Trees PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

Figure 10. Last-Level Cache-Misses, Lower is Better (NM, BCCO, ABTree, C-IST)

the highest optimization level (-O3). Threads were pinned to
cores such that thread counts up to 48 ran on only one CPU,
thread counts up to 96 run on only two CPUs, and so on.
We used the fast scalable allocator jemalloc 5.0.1-25. When a
memory page is allocated on our 4-CPU Xeon system, it has
an affinity for a single CPU, and other CPUs pay a penalty to
access it. We used the numactl -interleave=all option
to ensure that pages are evenly distributed across CPUs.

We compared our IST implementation (C-IST) to the lead-
ing non-blocking binary search tree (NM) due to Natarajan
and Mittal [36], Bronson’s concurrent AVL tree [10] (BCCO),
which is the leading blocking binary search tree, and a fast
non-blocking (a,b)-tree (ABTree) due to Brown (Ch.8 of
[13]), which is a concurrency-friendly variant of a B-tree.
(We also compared with many other concurrent search trees,
which are omitted here. See Section 5 in the corresponding
technical report [52] for details.)

The goal of the evaluation section is to examine whether
the amortizedO(log logn) running time induces performance
improvements on datasets that are reasonably large. We
therefore evaluate the C-IST operations against other com-
parable data structures in Section 5.1, where we show, for 1
billion keys, improvements ranging from 15-50% compared
to the (a,b)-tree [13] (the next best alternative), depending
on the ratio of updates and lookups. To further characterize
the performance, we compare the average key depth and
the impact on cache behavior in Section 5.2, and we show a
breakdown of the execution time in Section 5.3. We conclude
with a comparison of memory footprints in Section 5.4.

5.1 Comparison of the Basic Operations
Figure 9 shows the throughput of concurrent IST operations,
compared against other sorted set data structures, for dataset
sizes of k = 2 · 108 and k = 2 · 109 keys, and for u = 0%,
u = 1%, u = 10% and u = 40%, where u is the ratio of update
operations among all operations. Plots for additional dataset
sizes are shown in Figure 10 of the corresponding technical
report [52].

In all cases, C-IST operations have much higher through-
put than Natarajan and Mittal’s non-blocking binary search
tree (NM), and concurrent AVL trees due to Bronson (BCCO).
For update ratios u = 0% and u = 1%, concurrent IST also
has a higher throughput compared to Brown’s non-blocking
(a,b)-tree. The underlying cause for better throughput is a

lower rate of LLC misses due to IST’s doubly-logarithmic
depth. For higher update ratiosu = 10% andu = 40%, the cost
of concurrent rebuilds starts to dominate the gains of doubly-
logarithmic searches, and ABTree has a better throughput
for k = 2·108 keys. Above k = 2·109 keys, C-IST outperforms
ABTree even for the update ratio of u = 40%.

5.2 Average Depth and Cache Behavior
The main benefit of C-IST’s expected-O(log logn) depth is
that the key-search results in less cache misses compared to
other tree data structures. The plot shown below compares
the average number of pointer hops required to reach a key
(error bars show min/max values over all trials), for dataset
sizes from 2 · 106 to 2 · 109 keys. While the average depth
is 20-40 for NM and BCCO, the average ABTree depth is
between 6 and 10, and the average C-IST depth is below 5.

The differences in aver-
age depths between these
data structures correlate
with the average num-
ber of cache misses. Fig-
ure 10 compares the aver-
age number of last-level

cache-misses between the different data structures, for differ-
ent update ratios u. For the dataset size of 2 · 109 keys, C-IST
operations undergo 2× less cache misses, and slightly fewer
cache misses than ABTree. A detailed set of plots for differ-
ent dataset sizes is shown in Figure 11 of the corresponding
technical report [52].

5.3 Breakdown of the Execution Time
A breakdown of the execution time is shown in Figure 11,
which contains plots for non-collaborative and collaborative
rebuilding, update ratios u = 10% and u = 40%, and the
dataset size 2 · 109. In the non-collaborative variant, and for
higher thread counts, the execution time is dominated by the
useless helping operations. Since the work performed by the
helping threads is discarded, this results in scalability issues
as the update ratio u grows. In the collaborative variant, this
problem does not occur, and most of the rebuilding time is
spent in creating new subtrees. A more detailed set of plots
is shown in Figure 12 and Figure 13 of the corresponding
technical report [52].

284

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Trevor Brown, Aleksandar Prokopec, and Dan Alistarh

Figure 11. Execution Time Breakdown (creating, marking, useless helping, deallocation, locating garbage, other).
Bars are annotated with f , the number of times the root (entire tree) was rebuilt.

Figure 12. Comparison of Rebuilding Implementations

Figure 13.Memory Footprint Comparison

5.4 Memory Footprint
Due to using a lower number of nodes for the same dataset,
the average space overhead is lower for the C-IST than the
other data structures. Figure 13 shows the different memory
footprints for four different dataset sizes. C-IST has a relative
space overhead of ≈30-100%, whereas the overhead of the
other data structures is between ≈120-400%.

Figure 14. YCSB database performance with different index
data structures, and a skewed key access pattern. (NM omitted
because it is slower than BCCO.)

5.5 Additional Experiments

No-SQL databaseworkload.We study a simple in-memory
database management system called DBx1000 [63], which
is used in multi-core database research. DBx implements
a simple relational database, which contains one or more
tables. Each table can have one or more key fields and as-
sociated indexes. Each index allows processes to query a
specific key field, quickly locating any rows in which the key
field contains a desired value. We replace the default index
implementation in DBx with each of the BSTs that we study.

Following the approaches in [6, 63], we run a subset of the
well known Yahoo! Cloud Serving Benchmark (YCSB) core
with a single table containing 100 million rows, and a single
index. Each thread performs a fixed number of transactions
(100,000 in our runs), and the execution terminates when
the first thread finishes performing its transactions. Each

285

Non-Blocking Interpolation Search Trees PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

transaction accesses 16 different rows in the table, which
are determined by index lookups on randomly generated
keys. Each row is read with probability 0.9 and written with
probability 0.1. The keys that a transaction will access are
generated according to a Zipfian distribution following the
approach in [27].

The results in Figure 14 show how performance degrades
as the distribution of accesses to keys becomes highly skewed.
(Higher θ values imply a more extreme skew. A θ value of
0.9 is extremely skewed.)
Trees containingZipfian-distributedkeys. Since the per-
formance of the C-IST can theoretically degrade when the
tree contains a highly skewed set of keys, we construct a syn-
thetic benchmark to study such scenarios. In this benchmark,
n threads access a single instance of the C-IST, and there
is a prefilling phase followed by a measured phase. In the
prefilling phase, each thread repeatedly generates a key from
a Zipfian distribution (θ = 0.5) over the key range [1, 108]
(picking one of 100 million possible keys), and inserts this
key into the data structure (if it is not already present). This
continues until the data structure contains 10 million keys
(only 10% of the key range), at which point the prefilling
phase ends. In the measured phase, all threads perform u%
updates and (100 − u)% searches (for u ∈ {0, 1, 10}) on keys
drawn from the same Zipfian distribution, for 30 seconds.
This entire process is repeated for multiple trials, and for
thread countsn ∈ {24, 48, 96, 144, 190} (with at least one core
left idle to run system processes). The results in Figure 15
suggest that the C-IST can remain robust even in scenarios
where it contains a highly skewed distribution.
Artifact Evaluation. All code is publicly available, and a
working artifact is submitted as part of this work.

6 Related Work
Sequential interpolation search was first proposed by Peter-
son [40], and subsequently analyzed by [25, 39, 62]. The dy-
namic case, where insertions and deletions are possible, was
proposed by Frederickson [24]. The sequential IST variant we
build on is by Mehlhorn and Tsakalidis [34]. This data struc-
ture supports amortized insertions and deletions in O(logn)
time, under arbitrary distributions, and amortized insertion,
deletion, and search, in O(log logn) time under smoothness
assumptions on the key distribution. To improve scalabil-
ity, we augmented C-IST with parallel marking (to prevent
updates during rebuilding), and a parallel rebuilding phase.
For concurrent search data structures ensuring predeces-

sor queries, the work that is closest to ours is the Skip-
Trie [37], which allows predecessor queries in amortized
expectedO(log logu + γ) steps, and insertions and deletions
in O(γ log logu) time, where u is the size of the key space,
and γ is an upper bound on contention. The C-IST provides

Figure 15. Synthetic benchmark in which the set of keys
stored in a data structure is highly skewed.

inferior runtime bounds in the worst case (e.g., O(logn) ver-
sus O(log logu) amortized); however, the guarantees pro-
vided under distributional assumptions are asymptotically
the same. We believe the C-IST should provide superior prac-
tical performance due to better cache behavior. We have
attempted to provide a comparison of the C-IST with an
open-source implementation of the SkipTrie [1]; we found
that this implementation had significant stability and perfor-
mance issues, which render a fair comparison impossible.

There is considerable work on designing efficient concur-
rent search tree data structures with predecessor queries,
e.g. [6, 9, 11, 13, 14, 14, 22, 36]. The average-case complex-
ity of these operations is usually logarithmic in the number
of keys. For large key counts (our target application) this
search term dominates, giving the C-IST a significant perfor-
mance advantage. This effect is apparent in our experimental
section.
Other work on concurrent search tree data structures in-

cludes early work by Kung [31], Bronson’s lock-based con-
current AVL trees [10], Pugh’s concurrent skip list [58], and

286

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Trevor Brown, Aleksandar Prokopec, and Dan Alistarh

later improvements by Herlihy et al. [29] (which the JDK
implementation is based on), non-blocking BSTs due to Ellen
et al. [23], and the KiWi data structure due to Basin et al. [8].
The DCSS and DCSS_READ primitives that we rely on

were originally proposed by Harris [28]. The DCSS primitive
needs to allocate a descriptor object to synchronize multiple
memory locations. Our C++ implementation of DCSS, due
to Arbel-Raviv and Brown [3], is able to recycle the descrip-
tors. There are alternative primitives to DCSS with similar
expressive power, such as the GCAS instruction [51], used to
achieve snapshots in the Ctrie data structure.
Many concurrent data structures use the technique of

snapshotting the entire data structure or some part thereof,
with the goal of implementing a specific operation. The
SnapQueue data structure [44] uses a freezing technique
in which the writable locations are overwritten with spe-
cial values such that the subsequent CAS operations fail.
Ctries [43, 48, 49, 51] use the afore-mentioned GCAS op-
eration to prevent further updates to the data structure.
Work-stealing iterators [56, 57], used in work-stealing sched-
ulers [33, 55] for data-parallel collections [50], use similar
techniques to capture a snapshot of the iterator state.

The core motivation behind C-IST is to decrease the num-
ber of pointer hops during the key search. The underlying
reason for this is that cachemisses, which are incurred during
the key search, are the dominating factor in the operation’s
running time. A recent trend in concurrent data structure
design is to make data structures more flat, and in this way
reduce the effect of the bottlenecks in the memory hier-
archy. This is evident in that many data structures batch
nodes within a single memory object – examples include
concurrent search-tree designs [9, 15], lists, queues and ring
buffers [41, 44, 61], unrolled skip lists [42], and tries [48]. A
more recent flattening technique used in Cache-Tries is to
include an auxiliary, quiescently-consistent table to speed
up the key searches [45–47].
Our implementation of the C-IST data structure uses a

scalable concurrent counter in the root node to track the
number of updates since the last rebuild of the root node.
In the past, a large body of research focused on scalable
concurrent counters, both deterministic and probabilistic
variant thereof [2, 7, 20, 21, 30, 60]. Scalable counters are use-
ful in a number of other non-blocking data structures, which
use counters to track their size or various statistics about
the data structure. These include non-blocking queues [35],
FlowPools [53, 54, 59], concurrent hash maps in the JDK [32],
certain concurrent skip list implementations [26], and graphs
with reachability queries [19].

Our C-IST implementation is done in C++, and it uses
a custom concurrent memory management scheme due to
Brown [12, 18]. In addition, our implementation uses tech-
niques that decrease memory-allocator pressure by reusing
the descriptors that are typically used in lock-free algo-
rithms [3, 4].

7 Conclusion
We presented C-IST, the first concurrent implementation of
a dynamic interpolation search tree. C-IST is non-blocking
and scalable, and it preserves the desirable complexity prop-
erties of the original data structure with high probability.
Experimental results in C++ suggest that C-IST significantly
improves upon the performance of classic search data struc-
tures with similar semantics, by up to≈ 3.5×, and the current
best-performing alternative by up to 50%.

These findings suggest that concurrent data structure de-
signs can be improved in non-trivial ways by exploiting
input-specific techniques developed in the sequential case.
We see this as an interesting line of potential future work.

Acknowledgments. This project has received funding from
the European Research Council (ERC) under the European
Union Horizon 2020 research and innovation program, grant
agreement No 805223, ERC Starting Grant ScaleML.

We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC).

References
[1] 2018. SkipTrie Implementation at GitHub. https://github.com/

JoeLeavitt/SkipTrie
[2] Dan Alistarh, Trevor Brown, Justin Kopinsky, Jerry Z. Li, and Giorgi

Nadiradze. 2018. Distributionally Linearizable Data Structures. In
Proceedings of the 30th on Symposium on Parallelism in Algorithms
and Architectures (SPAA ’18). ACM, New York, NY, USA, 133–142.
https://doi.org/10.1145/3210377.3210411

[3] Maya Arbel-Raviv and Trevor Brown. 2017. Reuse, Don’t Recycle:
Transforming Lock-Free Algorithms That Throw Away Descriptors.
In 31st International Symposium on Distributed Computing, DISC 2017,
October 16-20, 2017, Vienna, Austria. 4:1–4:16. https://doi.org/10.4230/
LIPIcs.DISC.2017.4

[4] Maya Arbel-Raviv and Trevor Brown. 2017. Reuse, don’t Recycle:
Transforming Lock-free Algorithms that Throw Away Descriptors.
CoRR abs/1708.01797 (2017). arXiv:1708.01797 http://arxiv.org/abs/
1708.01797

[5] Maya Arbel-Raviv and Trevor Brown. 2018. Harnessing Epoch-based
Reclamation for Efficient RangeQueries. In Proceedings of the 23rd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’18). ACM, New York, NY, USA, 14–27. https://doi.org/10.1145/
3178487.3178489

[6] Maya Arbel-Raviv, Trevor Brown, and Adam Morrison. 2018. Getting
to the Root of Concurrent Binary Search Tree Performance. In USENIX
Annual Technical Conference.

[7] James Aspnes, Maurice Herlihy, and Nir Shavit. 1994. Counting Net-
works. J. ACM 41, 5 (Sept. 1994), 1020–1048. https://doi.org/10.1145/
185675.185815

[8] Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-
Gueta, Eshcar Hillel, Idit Keidar, and Moshe Sulamy. 2017. KiWi:
A Key-Value Map for Scalable Real-Time Analytics. In Proceedings
of the 22Nd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP ’17). ACM, New York, NY, USA, 357–369.
https://doi.org/10.1145/3018743.3018761

[9] Anastasia Braginsky and Erez Petrank. 2012. A lock-free B+ tree. In
Proceedings of the twenty-fourth annual ACM symposium on Parallelism
in algorithms and architectures. ACM, 58–67.

[10] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun.
2010. A Practical Concurrent Binary Search Tree. SIGPLAN Not. 45, 5

287

Non-Blocking Interpolation Search Trees PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

(Jan. 2010), 257–268. https://doi.org/10.1145/1837853.1693488
[11] Trevor Brown. 2014. B-slack Trees: Space Efficient B-Trees. In Al-

gorithm Theory - SWAT 2014 - 14th Scandinavian Symposium and
Workshops, Copenhagen, Denmark, July 2-4, 2014. Proceedings. 122–
133. https://doi.org/10.1007/978-3-319-08404-6_11

[12] Trevor Brown. 2017. Reclaiming memory for lock-free data struc-
tures: there has to be a better way. CoRR abs/1712.01044 (2017).
arXiv:1712.01044 http://arxiv.org/abs/1712.01044

[13] Trevor Brown. 2017. Techniques for Constructing Efficient Data Struc-
tures. Ph.D. Dissertation. University of Toronto.

[14] Trevor Brown and Hillel Avni. 2012. Range Queries in Non-blocking k-
ary Search Trees. In Principles of Distributed Systems, 16th International
Conference, OPODIS 2012, Rome, Italy, December 18-20, 2012. Proceedings.
31–45. https://doi.org/10.1007/978-3-642-35476-2_3

[15] Trevor Brown and Joanna Helga. 2011. Non-blocking k-ary Search
Trees. In Principles of Distributed Systems - 15th International Confer-
ence, OPODIS 2011, Toulouse, France, December 13-16, 2011. Proceedings.
207–221. https://doi.org/10.1007/978-3-642-25873-2_15

[16] Trevor Brown, Aleksandar Prokopec, and Dan Alistarh. 2020. Artifact
for Non-Blocking Interpolation Search Trees with Doubly-Logarithmic
Running Time. https://doi.org/10.1145/3332466.3374542

[17] Trevor Brown, Aleksandar Prokopec, and Dan Alistarh. 2020. Non-
Blocking Interpolation Search Trees with Doubly-Logarithmic Run-
ning Time. In Proceedings of the 25th Symposium on Principles and
Practice of Parallel Programming (PPoPP ’20). ACM, New York, NY,
USA.

[18] Trevor Alexander Brown. 2015. Reclaiming Memory for Lock-Free
Data Structures: There has to be a Better Way. In Proceedings of the
2015 ACM Symposium on Principles of Distributed Computing, PODC
2015, Donostia-San Sebastián, Spain, July 21 - 23, 2015. 261–270. https:
//doi.org/10.1145/2767386.2767436

[19] Bapi Chatterjee, Sathya Peri, Muktikanta Sa, and Nandini Singhal.
2019. A Simple and Practical Concurrent Non-Blocking Unbounded
Graph with Linearizable Reachability Queries. In Proceedings of the
20th International Conference on Distributed Computing and Networking
(ICDCN ’19). Association for Computing Machinery, New York, NY,
USA, 168–177. https://doi.org/10.1145/3288599.3288617

[20] Damian Dechev and Bjarne Stroustrup. 2009. Scalable Nonblocking
Concurrent Objects for Mission Critical Code. In Proceedings of the 24th
ACM SIGPLAN Conference Companion on Object Oriented Programming
Systems Languages and Applications (OOPSLA ’09). Association for
Computing Machinery, New York, NY, USA, 597–612. https://doi.org/
10.1145/1639950.1639954

[21] Dave Dice, Yossi Lev, and Mark Moir. 2013. Scalable Statistics
Counters. In Proceedings of the Twenty-Fifth Annual ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA ’13). As-
sociation for Computing Machinery, New York, NY, USA, 43–52.
https://doi.org/10.1145/2486159.2486182

[22] Dana Drachsler, Martin Vechev, and Eran Yahav. 2014. Practical con-
current binary search trees via logical ordering. ACM SIGPLAN Notices
49, 8 (2014), 343–356.

[23] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel.
2010. Non-blocking Binary Search Trees. In Proceedings of the 29th
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Com-
puting (PODC ’10). ACM, New York, NY, USA, 131–140. https:
//doi.org/10.1145/1835698.1835736

[24] Greg N Frederickson. 1983. Implicit data structures for the dictionary
problem. Journal of the ACM (JACM) 30, 1 (1983), 80–94.

[25] Gaston H Gonnet, Lawrence D Rogers, and J Alan George. 1980. An
algorithmic and complexity analysis of interpolation search. Acta
Informatica 13, 1 (1980), 39–52.

[26] Vincent Gramoli. 2015. More than You Ever Wanted to Know about
Synchronization: Synchrobench, Measuring the Impact of the Synchro-
nization on Concurrent Algorithms. In Proceedings of the 20th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP 2015). Association for Computing Machinery, New York, NY,
USA, 1–10. https://doi.org/10.1145/2688500.2688501

[27] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken Baclawski, and
Peter J. Weinberger. 1994. Quickly Generating Billion-record Synthetic
Databases. In Proceedings of the 1994 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD ’94). ACM, New York, NY,
USA, 243–252. https://doi.org/10.1145/191839.191886

[28] Timothy L. Harris, Keir Fraser, and Ian A. Pratt. 2002. A Practical
Multi-word Compare-and-Swap Operation. In Proceedings of the 16th
International Conference on Distributed Computing (DISC ’02). Springer-
Verlag, Berlin, Heidelberg, 265–279. http://dl.acm.org/citation.cfm?
id=645959.676137

[29] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. 2006. A
Provably Correct Scalable Concurrent Skip List.

[30] Maurice Herlihy, Beng-Hong Lim, and Nir Shavit. 1995. Scalable
Concurrent Counting. ACM Trans. Comput. Syst. 13, 4 (Nov. 1995),
343–364. https://doi.org/10.1145/210223.210225

[31] H. T. Kung and Philip L. Lehman. 1980. Concurrent Manipulation
of Binary Search Trees. ACM Trans. Database Syst. 5, 3 (Sept. 1980),
354–382. https://doi.org/10.1145/320613.320619

[32] Doug Lea. 2018. Doug Lea’s Workstation. http://g.oswego.edu/
[33] Jonathan Lifflander, Sriram Krishnamoorthy, and Laxmikant V. Kale.

2013. Steal Tree: Low-Overhead Tracing of Work Stealing Sched-
ulers. In Proceedings of the 34th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’13). Asso-
ciation for Computing Machinery, New York, NY, USA, 507–518.
https://doi.org/10.1145/2491956.2462193

[34] Kurt Mehlhorn and Athanasios Tsakalidis. 1993. Dynamic interpola-
tion search. Journal of the ACM (JACM) 40, 3 (1993), 621–634.

[35] Maged M. Michael and Michael L. Scott. 1996. Simple, Fast, and Prac-
tical Non-Blocking and Blocking Concurrent Queue Algorithms. In
Proceedings of the Fifteenth Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC ’96). Association for Computing Machinery,
New York, NY, USA, 267–275. https://doi.org/10.1145/248052.248106

[36] Aravind Natarajan and Neeraj Mittal. 2014. Fast Concurrent Lock-
free Binary Search Trees. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP
’14). 317–328.

[37] Rotem Oshman and Nir Shavit. 2013. The SkipTrie: Low-depth Con-
current Search Without Rebalancing. In Proceedings of the 2013 ACM
Symposium on Principles of Distributed Computing (PODC ’13). ACM,
New York, NY, USA, 23–32. https://doi.org/10.1145/2484239.2484270

[38] Yehoshua Perl, Alon Itai, and Haim Avni. 1978. Interpolation Search –
a Log logN Search. Commun. ACM 21, 7 (July 1978), 550–553. https:
//doi.org/10.1145/359545.359557

[39] Yehoshua Perl and Edward M Reingold. 1977. Understanding the
complexity of interpolation search. Inform. Process. Lett. 6, 6 (1977),
219–222.

[40] WWesley Peterson. 1957. Addressing for random-access storage. IBM
journal of Research and Development 1, 2 (1957), 130–146.

[41] Kenneth Platz, Neeraj Mittal, and Subbarayan Venkatesan. 2014. Prac-
tical Concurrent Unrolled Linked Lists Using Lazy Synchronization.
In Principles of Distributed Systems, Marcos K. Aguilera, Leonardo
Querzoni, and Marc Shapiro (Eds.). Springer International Publishing,
Cham, 388–403.

[42] Kenneth Platz, Neeraj Mittal, and S. Venkatesan. 2019. Concurrent
Unrolled Skiplist. 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS) (2019), 1579–1589.

[43] Aleksandar Prokopec. 2014. Data Structures and Algorithms for Data-
Parallel Computing in a Managed Runtime. (2014).

[44] Aleksandar Prokopec. 2015. SnapQueue: Lock-free Queue with Con-
stant Time Snapshots. In Proceedings of the 6th ACM SIGPLAN Sym-
posium on Scala (SCALA 2015). ACM, New York, NY, USA, 1–12.

288

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Trevor Brown, Aleksandar Prokopec, and Dan Alistarh

https://doi.org/10.1145/2774975.2774976
[45] Aleksandar Prokopec. 2017. Analysis of Concurrent Lock-Free Hash

Tries with Constant-Time Operations. ArXiv e-prints (Dec. 2017).
arXiv:cs.DS/1712.09636

[46] Aleksandar Prokopec. 2018. Cache-tries: Concurrent Lock-free Hash
Tries with Constant-time Operations. In Proceedings of the 23rd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’18). ACM, New York, NY, USA, 137–151. https://doi.org/10.
1145/3178487.3178498

[47] Aleksandar Prokopec. 2018. Efficient Lock-Free Removing and Com-
paction for the Cache-Trie Data Structure. Springer International Pub-
lishing, Cham.

[48] Aleksandar Prokopec, Phil Bagwell, and Martin Odersky. 2011. Cache-
Aware Lock-Free Concurrent Hash Tries. Technical Report.

[49] Aleksandar Prokopec, Phil Bagwell, and Martin Odersky. 2011. Lock-
Free Resizeable Concurrent Tries. Springer Berlin Heidelberg, Berlin,
Heidelberg, 156–170. https://doi.org/10.1007/978-3-642-36036-7_11

[50] Aleksandar Prokopec, Phil Bagwell, Tiark Rompf, and Martin Odersky.
2011. A Generic Parallel Collection Framework. In Proceedings of
the 17th international conference on Parallel processing - Volume Part
II (Euro-Par’11). Springer-Verlag, Berlin, Heidelberg, 136–147. http:
//dl.acm.org/citation.cfm?id=2033408.2033425

[51] Aleksandar Prokopec, Nathan Grasso Bronson, Phil Bagwell, and Mar-
tin Odersky. 2012. Concurrent Tries with Efficient Non-blocking
Snapshots. In Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP ’12). ACM, New
York, NY, USA, 151–160. https://doi.org/10.1145/2145816.2145836

[52] Aleksandar Prokopec, Trevor Brown, and Dan Alistarh. 2020. Analysis
and Evaluation of Non-Blocking Interpolation Search Trees. (Dec.
2020). arXiv:cs.DS/2001.00413

[53] Aleksandar Prokopec, Heather Miller, Philipp Haller, Tobias Schlat-
ter, and Martin Odersky. 2012. FlowPools: A Lock-Free Deterministic
Concurrent Dataflow Abstraction, Proofs. Technical Report.

[54] Aleksandar Prokopec, Heather Miller, Tobias Schlatter, Philipp Haller,
and Martin Odersky. 2012. FlowPools: A Lock-Free Deterministic
Concurrent Dataflow Abstraction. In LCPC. 158–173.

[55] Aleksandar Prokopec and Martin Odersky. 2014. Near Optimal Work-
Stealing Tree Scheduler for Highly Irregular Data-Parallel Workloads.
Springer International Publishing, Cham, 55–86. https://doi.org/10.
1007/978-3-319-09967-5_4

[56] Aleksandar Prokopec, Dmitry Petrashko, and Martin Odersky. 2014.
On Lock-Free Work-stealing Iterators for Parallel Data Structures.
(2014), 10. http://infoscience.epfl.ch/record/196627

[57] A. Prokopec, D. Petrashko, and M. Odersky. 2015. Efficient Lock-
Free Work-Stealing Iterators for Data-Parallel Collections. In 2015
23rd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing. 248–252. https://doi.org/10.1109/PDP.2015.
65

[58] William Pugh. 1990. Concurrent Maintenance of Skip Lists. Technical
Report. College Park, MD, USA.

[59] Tobias Schlatter, Aleksandar Prokopec, Heather Miller, Philipp Haller,
and Martin Odersky. 2012. Multi-Lane FlowPools: A Detailed Look.
(2012), 13.

[60] Guy L. Steele and Jean-Baptiste Tristan. 2016. Adding Approximate
Counters. In Proceedings of the 21st ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP ’16). Association
for Computing Machinery, New York, NY, USA, Article Article 15,
12 pages. https://doi.org/10.1145/2851141.2851147

[61] Martin Thompson, Dave Farley, Michael Barker, Patricia Gee, and
Andrew Stewart. 2011. Disruptor: High performance alternative to
bounded queues for exchanging data between concurrent threads.
http://lmax-exchange.github.io/disruptor/files/Disruptor-1.0.pdf

[62] Andrew C Yao and F Frances Yao. 1976. The complexity of searching
an ordered random table. In Foundations of Computer Science, 1976.,

17th Annual Symposium on. IEEE, 173–177.
[63] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and

Michael Stonebraker. 2014. Staring into the Abyss: An Evaluation
of Concurrency Control with One Thousand Cores. VLDB 8, 3 (Nov.
2014).

289

Non-Blocking Interpolation Search Trees PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

A Artifact Description
A.1 Getting Started Guide
We prepared a Docker container that can be used to run the
experiments from the paper. The requirements are:

• A relatively recent Linux distribution (we used Ubuntu
to prepare the artifact).

• An installation of a recent Docker (see instructions
further below).

• A multicore CPU. We used a 4-socket system, with
four Intel 8160 CPUs (192 threads total). A less parallel
CPU will also suffice, although you will replicate less
of our experiments.

• If you want to reproduce all the results, we suggest
to have 384 GB of RAM memory, which is what our
machine had available. If you have less RAM, for ex-
ample 128 GB, the experiments might still work. Note
that it is also possible to reduce the dataset sizes in
most experiments (for details, see instructions in the
Step-by-Step guide).

The artifact is available for download at Zenodo [16], at
the URL https://zenodo.org/record/3600160#.XhReF2bQi5M.

The steps to download and run the artifact are as follows
(note – you might have to use sudo for Docker):

1. Install a newer version of Docker to your system. For
example, we were using ‘Docker version 19.03.5, build
633a0ea838‘. You can run:

$ docker --version

to check the version. If you are using the Ubuntu distri-
bution, see the instructions here: https://docs.docker.
com/install/linux/docker-ce/ubuntu/

2. Download the ppopp20-artifact.tar.gz file that
is the docker image from: https://www.dropbox.com/
s/xs34t8mmi53e6oh/paper-241.tar.gz?dl=0

3. Load the docker image from the downloaded file:
$ docker load -i paper-241.tar.gz

4. Run the following to check that the image was loaded:
$ docker images

Start a Docker container from the artifact image. Note
that you have to run in the privileged mode so that the
artifact can use thread-to-CPU pinning and some other
facilities. Run the following:

$ docker run -i -t --privileged \
ppopp20-artifact /bin/bash

5. Go to the root/artifact folder:
$ cd /root/artifact

6. Run ls. You should see several folders, in particu-
lar microbench and macrobench. In this image, the
source files have already been compiled for both the
microbenchmarks and the macrobenchmarks, but if
you want to compile them again, you should delete
microbench/bin and macrobench/bin, then run
microbench/compile.sh, and then to compile mac-
robenchmarks, run macrobench/compile.sh.

7. To test that you can run the benchmarks, please first
go to microbench/experiments. Then run ls. You
will see several folders, one for each experiment. Run:

$ cd istree_exp1_scaling_threads

to enter the first experiment. If necessary, make the
run.sh script executable like this: chmod a+x run.sh.
Then run the script:

$./run.sh

You should see output like this.
Estimated 5 hours to run
filename,DS_TYPENAME,size_node, ...
step 10001/10128: ...
step 10002/10128: ...
...

Press CTRL-Z, run top and kill the run.sh process.
8. Now go to the macrobench/experiments folder, and

the macro benchmark.
$ cd /root/artifact/macrobench/\

experiments/istree_exp1
$./run.sh "< thread-counts >"

where the < thread-counts > is the list of thread
counts you want to run it with. For example, if your
CPU has 8 cores, you can run it with "2 4 8". Please
make sure to include the double quotes. Also, do not
use thread counts larger than the number of CPUs,
because the taskset command, which is used in the
benchmark, will fail. You should see output like this:

Estimated running time ...

alg nthreads theta ...
...

Press CTRL-Z, run top and kill the run.sh process.
If you managed to run these steps, then you should be

able to run the experiments.

A.2 Step-by-Step Instructions
The artifact supports the following claims from the paper:

290

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Trevor Brown, Aleksandar Prokopec, and Dan Alistarh

• microbench/experiments/istree_exp1_scaling_threads
– supports Figure 9, which shows the throughput of
the basic operations for different data structures.

• microbench/experiments/istree_exp2_memory_static
– supports Figure 13, which shows the memory foot-
prints of the different data structures.

• istree_exp3_disable_multicounter in microbench/ex-
periments/ – supports Figure 14 from the technical
report [52], which evaluates the effect of multicoun-
ters.

• istree_exp4_disable_rebuild_helping in microbench/-
experiments/ – supports Figure 12, which shows the
effect of disabling collaborative rebuilding.

• microbench/experiments/istree_exp6_rebuilding_time
– supports Figure 11, which shows the amount of time
spent in C-IST rebuilding vs in other operations.

• microbench/experiments/istree_exp9_zipf – supports
Figure 15, which shows the performance of basic ops
on Zipfian key distributions.

• macrobench/experiments/istree_exp1 – supports Fig-
ure 14, which shows the performance of different data
structures on the YCSB database benchmark.

Of these experiments, the most important is ‘microbench/-
experiments/istree_exp1_scaling_threads‘.

To run each of these experiments:
1. Enter the respective folder.

2. Run the ‘./run.sh‘ script (set permissions if necessary).
3. After the experiment completes, inspect the CSV files

in that folder.

Note that, for each experiment, you canmodify the ‘run.sh‘
scripts to change various parameters of the experiment. For
example, in ‘istree_exp1_scaling_threads‘, you can change
the ‘thread_counts‘ variable tomanually set the thread counts
that you want to run with. Similarly, in the experiment
‘istree_exp2_memory_static‘, you can change the value of
‘key_range_sizes‘ to change the key counts.

When an experiment completes, it will produce a CSV
file, which contains all the data. You can manually inspect
the numbers in each CSV file, or you can open the Excel
spreadsheet in each folder, paste the CSV file contents into
it, and the graphs will automatically be generated for you if
you click on the "refresh all" button (you need Excel macros
to run for this, you can check them if you press ALT-F11).

The artifact technically does not reproduce the hardware
counter performance, since we did not manage to run them
within Docker. However, if you copy the folder with the
artifact to your host system (docker cp), recompile every-
thing there, and re-run the benchmarks, then you should
be able to reproduce the hardware counter numbers (this
data is included the CSV file of istree_exp1_scaling_threads
microbenchmark).

291

