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Abstract
Inlining is the primary facilitating mechanism for intraproce-
dural Partial Escape Analysis (PEA), which allows for the re-
moval of object allocations on a branch-by-branch basis and
is critical for performance in object-oriented languages. Prior
work used interprocedural Escape Analysis to make inlin-
ing decisions, but it discarded control-flow-sensitivity when
crossing procedure boundaries, and did not weigh other
metrics to model the cost-benefit of inlining, resulting in un-
predictable inlining decisions and suboptimal performance.
Our work addresses these issues and introduces a novel In-
terprocedural Partial Escape Analysis algorithm (IPEA) to
predict the inlining benefits, and improve the cost-benefit
model of an existing optimization-driven inliner. We evalu-
ate the implementation of IPEA in GraalVM Native Image,
on industry-standard benchmark suites Dacapo, ScalaBench,
and Renaissance. Out of 36 benchmarks with a geometric
mean runtime improvement of 1.79%, 6 benchmarks achieve
an improvement of over 5% with a geomean of 9.10% and
up to 24.62%, while also reducing code size and compilation
times compared to existing approaches.

CCS Concepts: • Software and its engineering→ Source
code generation; Runtime environments; Just-in-time com-
pilers.
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1 Introduction
Partial Escape Analysis (PEA) [50] is a control flow sensi-
tive variant of Escape Analysis [7–9, 11, 12, 18, 25, 44, 55].
The analysis computes whether an object escapes outside
the scope of the procedure and performs optimizations such
as stack allocation for objects, replacing object fields with
scalars, and eliding locks. Flow-sensitivity significantly in-
creases the escape-analysis effectiveness, and decreases the
dynamic allocation rate compared to flow-insensitive anal-
ysis [50]. This is achieved by allocating, or materializing,
objects on some control-flow paths and keeping them virtual
on others. PEA is an intraprocedural phase, so its potency is
limited by calls to other procedures since almost all objects
escape into at least one other procedure [25, 50].
In existing work, this limitation is mitigated with inter-

procedural analysis that foregoes control-flow sensitivity
when crossing procedure boundaries [7, 11, 25]. The results
of the analysis are then used to either guide inlining deci-
sions [25] and then applying PEA within the scope of inlined
procedures, or to employ alternative schemes such as stack
allocation or region-based memory management, but with-
out doing the inlining [11].
Although not mutually exclusive with interprocedural

analyses, intraprocedural analysis is the more pragmatic
choice for most compiler optimizations. In most optimizing
compilers, optimization passes are intraprocedural [1, 15, 27,
32], and inlining kickstarts their symbiotic interplay. This
is particularly prevalent for the optimizations performed by
PEA, as one can easily see how scalar replacement conse-
quently enables constant folding, conditional branch elimina-
tion, value numbering, andmany others [36]. Most compilers
therefore perform inlining as one of the earliest optimization
passes, before optimizations such as PEA.

While delegating the responsibility of interprocedural es-
cape analysis to inlining is powerful, it introduces its own
set of challenges. Inlining can be modeled as the NP-hard
Knapsack problem if a cost-benefit assignment is available at
each callsite [45]. However, the cost-benefit assignment is
a best-effort approximation of a ground-truth cost-benefit
– to correctly assess cost-benefit, the compiler must predict
the optimizations that follow inlining, either by inferring
them from the procedure body [4, 46], or by using inlining
trials [13]. Profiling data, such as the callsite frequencies and
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call-target distributions, is then used to further assess the
performance impact of each inlining decision [20, 21, 35].

Most prior work in the domain of inlining and interproce-
dural escape analysis indiscriminately applies ad-hoc heuris-
tics to make inlining decisions whenever an allocation can be
removed [5, 8, 25, 26, 33], and without ostensibly weighing
these decisions against other considerations such as code
size, compilation unit clustering, and instruction cost, which
is what inliners traditionally do [2–4, 13, 35, 45, 46, 51]. This
leads to inlining decisions that are based on a fragmented
view of available information, leading to inconsistent perfor-
mance metrics at best and adverse effects at worst.
This paper aims to address the following question – how

can interprocedural partial escape analysis improve inlining de-
cisions, and consequently peak performance of user programs?
The contributions in the paper are as follows:

• A novel approach that interleaves interprocedural par-
tial escape analysis with inlining and computes the al-
location frequency of escaping objects, with the aim of
improving inlining decisions. The approach maintains
flow-sensitivity across procedure boundaries and uti-
lizes the collected profiling information (Section 3.1).
• Integration of materialization frequency metrics (Sec-
tion 3.2) into an existing optimization-driven incre-
mental inlining algorithm [35] used in GraalVM Na-
tive Image, yielding a single point of accountability
for inlining (Section 3.3).
• A production-ready implementation in state-of-the-art
optimizing compiler Graal [15, 16], in ahead-of-time
compilation mode on GraalVM Native Image [57].
• A comprehensive performance evaluation that consists
of peak-performance, allocation-rate, code-size and
compile-time analysis on DaCapo [6], Scalabench [47],
and Renaissance benchmark suites [39–41], as well as
the extensive tuning of the proposed heuristics. We
report a geometric mean performance improvement
of 1.79% up to 24.62% across all 36 benchmarks, and
geomean code size improvement of 1.81%. In total there
are 6 benchmarks with >5% speedup and geometric
mean of 9.10% (Section 4).

2 Motivation & Background
1 class IntListMap<V> {
2 Object[] list;
3 int last;
4
5 V put(int key, V val) {
6 var boxed = new Integer(key);
7 for (int i=0;i<last;i+=2)
8 if (list[i].equals(boxed))
9 return list[i + 1] = val;
10 list[last++] = boxed;
11 return list[last++] = val;
12 }
13 }

Listing 1. IntListMap

Consider the method
put of the IntListMap
class in Listing 1, which
closely corresponds to
the class ListHashMap
from the Groovy core
library [19]. This col-
lection stores key-value
pairs as two consecu-
tive entries in an array-
based list. Keys are always primitive integers, but values are

of any generic object type V. The list array is of Object[]
type because JVM cannot store primitives and objects in the
same array. Thus, a key must be boxed in line 6 into an ob-
ject, before being stored. In the loop in line 7, put then scans
the array up to position last, to see if the specified key is
already in list. If an equal key is present at i, the existing
value at i + 1 is overwritten, but the key itself is not stored.
If the key is not present, the boxed key is stored in line 10.

It seems as if the allocation can be delayed until line 10 –
if a map kept reusing the same keys, this would reduce the
allocation rate greatly. But alas – boxed escapes earlier, in the
equals call in line 8! Luckily, any decent inliner will exploit
the receiver-type profile to decide that equals always calls
Integer#equals [14] – it inserts a speculative typecheck,
and trivially inlines Integer#equals, which compares the
primitive integer fields of the two boxed Integer objects:
if (!(list[i] instanceof Integer)) deopt();
if (list[i].integer==boxed.integer) return list[i + 1] = val;

If the dynamic typecheck fails, the code is either deoptimized,
or the execution gets continued in baseline compiled code,
which does not inline equals, but is less efficient [56].
1 for (i = 0; i < last; i += 2)
2 if (list[i].integer == key)
3 return list[i + 1] = val;
4 var boxed1 = new Integer(key);
5 list[last++] = boxed1;
6 return list[last++] = val;

Listing 2. PEA on put

PEA can now postpone
the boxed allocation – it
keeps it virtual in line 2 in
Listing 2, where the read
boxed.integer can be re-
placed with just key; and
materializes it in line 4. Yet,

a more realistic list-map, one that better resembles Groovy’s
ListHashMap [19], would keep its key type generic.

class ListMap<K, V>

1 V put(K key, V val) {
2 for (int i=0;i<last;i+=2)
3 if (list[i].equals(key))
4 return list[i + 1] = val;
5 list[last++] = key;
6 return list[last++] = val;
7 }

Listing 3. Generic put

In this case, the key
parameter has a type K,
which is erased to an
Object type [10] – a prim-
itive integer key must be
boxed at put’s callsite, be-
fore put is even called, so there is nothing PEA can do! The
only hope is that the inliner decides to inline put wherever
put is called – then PEA could ‘see’ the allocation of key.
The following procedure inserts the primitive key 1 into a
ListMap that maps Integer keys to String values:

void client(ListMap<Integer, String> m)
{ return m.put(1, "one"); }

Since the key-type is Integer, the javac compiler ‘auto-
boxes’ the primitive int value that is passed in the put call.
The actual compiled code resembles the following:

return m.put(new Integer(1), "one");

If something were to ‘convince’ the inliner that there is ben-
efit in inlining the put call, the resulting compilation unit
would contain both the allocation and its usages. This ex-
tended horizon over the program would allow PEA to trans-
form the code to the following:
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for (i = 0; i < m.last; i += 2)
if (m.list[i].integer == 1) return m.list[i + 1] = "one";

var boxed1 = new Integer(1);
m.list[m.last++] = boxed1;
return m.list[m.last++] = "one";

But, despite having delayed the allocation of the Integer,
was inlining put really worth it? It depends. For one thing,
the put call inside the client procedure should be overall
executed often, otherwise, the gains are anyway miniscule.
Then, we should be reasonably assured that path to the final
return is cold, that is, that most of the time we exit early,
in the for loop. Finally, we should make sure that there are
no other ‘better’ inlining candidates – perhaps the inlining
budget would be better spent elsewhere?

To deal with such considerations, inliners build cost-benefit
models that guide their decisions. These models are usually
based on execution profiles, knowledge about code-size and
opportunities for other optimizations. Rather than disregard-
ing all these other factors, perhaps we should try to influence
an existing inliner by biasing its cost-benefit model?

This deliberation motivates our main research questions:

• RQ1: How do we compute the frequency of material-
izations for objects that escape across procedures?
• RQ2: How can we quantify the benefit of reducing
materialization-frequency through inlining, such that
we improve an existing cost-benefit estimation?

2.1 Intraprocedural Partial Escape Analysis
Let’s consider how standard intraprocedural PEA works
when viewed at the source code level of the previous example.
At each instruction 𝑛, PEA maintains a mapping O(𝑛) called
virtualization, which maps each value to the virtualization
state of that value. Each allocated object is mapped to either
a materialized value𝑚 ∈ V, indicating that the respective
object escaped and was allocated as another value𝑚; or to a
sequence of field-value pairs 𝑓𝑗 → 𝑥 𝑗 , indicating the state of
an object that did not escape (i.e. object that is virtual):
O(𝑛) : V ↦→ V ∪ {(𝑓0 → 𝑥0, . . . , 𝑓𝑖 → 𝑥𝑖 ) : 𝑓𝑗 ∈ S ∧ 𝑥 𝑗 ∈ V}
Above, V represents the set of referable values in the pro-
gram, 𝑓𝑗 represents a field name from the set of all strings S,
and each field is mapped to another value 𝑥 𝑗 ∈ V.
In our example with the put(int, V) procedure, after

executing the statement 𝑛0 ≡var boxed=new Integer(key)
in line 6, 𝑂 maps the boxed value to a tuple whose integer
field is set to the value of the parameter key:

O(𝑛0) = {boxed ↦→ (integer→ key)}
Statements in line 7 and line 8 do not modify the boxed

object, in other words O(𝑛1) = O(𝑛0) = O(𝑛2). However, 𝑛2
can exploit the mapping O, namely, 𝑛2 can be replaced with
list[i].integer==key, because O(𝑛2) tells us that boxed is
virtual (i.e. did not yet escape), and its value field is equal to
key. The next statement 𝑛3 ≡list[last++]=boxed material-
izes the boxed object, since the reference to boxed escapes

as part of the array-write. Mapping O(𝑛3) becomes:
O(𝑛3) = {boxed ↦→ boxed1}

which means that original allocation boxed is on this control-
flow path materialized under the name boxed1. PEA thus
inserts the instruction var boxed1=new Integer(key) just
before 𝑛3, and makes sure that the boxed1 value is used
instead of boxed on the rest of the control-flow path.
PEA on control-flow graphs. Having grasped how PEA
uses the mapping O, let’s express PEA as a dataflow analysis
on control-flow graphs (CFGs). Control-flow graphs will
allow us tomore concisely define how individual instructions
affect the mapping O. Also, our actual implementation was
done on Graal IR, which is conceptually a reducible control-
flow graph. The CFG that corresponds to the put procedure
from Listing 1 is shown in Figure 1.

In the previous discussion of Listing 1, we were somewhat
lax about what an instruction is – in the CFG, we define an
individual instruction as a node. Nodes may be connected
with directed edges, which represent the control-flow of the
program. For each type of node, we can define two map-
pings O𝑖𝑛 and O𝑜𝑢𝑡 , as the virtualization before and after the
respective node is executed, and use them to describe how
each node changes the virtualization.
Let the set A be the set of all nodes that represent object

allocations. Then, node 𝑎 ∈ A, which allocates an object with
𝑖 fields, modifies O as follows (⊥ is the default value):
O𝑜𝑢𝑡 (𝑎) = O𝑖𝑛 (𝑎) [𝑎 ↦→ (𝑓0 → ⊥, . . . , 𝑓𝑖 → ⊥)] 𝑎 ∈ A
Next, letW be the set of nodes that store a value 𝑥 into

a field 𝑓 of an object allocated at 𝑎. For a node 𝑤𝑎
𝑓 ,𝑥
∈ W

we have two cases – the field 𝑓 is updated to 𝑥 only if 𝑎 is
virtual, and otherwise, the mapping is not modified:

O𝑜𝑢𝑡 (𝑤𝑎
𝑓 ,𝑥
) =


O𝑖𝑛 (𝑤𝑎

𝑓 ,𝑥
) [𝑎 ↦→ (... , 𝑓 � 𝑥, ...)]

if 𝑎 ↦→ (... , 𝑓 � 𝑦, ...) ∈ O𝑖𝑛 (𝑤𝑎
𝑓 ,𝑥
)

O𝑖𝑛 (𝑤𝑎
𝑓 ,𝑥
) otherwise when𝑤𝑎

𝑓 ,𝑥
∈ W

Set E consists of nodes that cause an object to escape to
the heap: in intraprocedural PEA, these are calls to other
subroutines, writes to global fields, and writes to already
materialized objects. We use the relation 𝑛 esc−−→ 𝑎 to denote
that a node 𝑛 causes an object allocated at node 𝑎 to escape.
Let 𝑒𝑎 esc−−→ 𝑎. Again, O changes only if object 𝑎 is virtual,

in which case 𝑎 is materialized. For all fields 𝑓 , if 𝑓 points to
another virtual object, that object is transitively materialized:

𝜇 (O, 𝑥) =


𝜇 (... 𝜇 (O[𝑥 ↦→𝑚], 𝑥0), ... , 𝑥𝑖 )
if 𝑥 ↦→ (𝑓0 � 𝑥0, ... , 𝑓𝑖 � 𝑥𝑖 ) ∈ O
O otherwise

O𝑜𝑢𝑡 (𝑒𝑎) = 𝜇 (O𝑖𝑛 (𝑒𝑎), 𝑎) when 𝑒𝑎 esc−−→ 𝑎

Above, the helper function 𝜇 recursively traverses the object
graph. Each virtual object is replaced with𝑚, which repre-
sents a newly inserted node that materializes the object that
had been allocated at node 𝑎 in the original program.
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new boxed

store boxed.integer = key

loop header

load boxed.integer

load list[i].integer

==
if

store list[i+1] = valloop end

return

store list[last++] = boxed

store list[last++] = val

return

𝑏𝑜𝑥𝑒𝑑 ↦→ (𝑖𝑛𝑡𝑒𝑔𝑒𝑟 → ⊥)

𝑏𝑜𝑥𝑒𝑑 ↦→ (𝑖𝑛𝑡𝑒𝑔𝑒𝑟 → key)

𝑏𝑜𝑥𝑒𝑑 ↦→ (𝑖𝑛𝑡𝑒𝑔𝑒𝑟 → key)

𝑏𝑜𝑥𝑒𝑑 ↦→ (𝑖𝑛𝑡𝑒𝑔𝑒𝑟 → key)

𝑏𝑜𝑥𝑒𝑑 ↦→ (𝑖𝑛𝑡𝑒𝑔𝑒𝑟 → key)

new boxed

store boxed.integer = key

𝑏𝑜𝑥𝑒𝑑 ↦→ (𝑖𝑛𝑡𝑒𝑔𝑒𝑟 → key)

𝑏𝑜𝑥𝑒𝑑 ↦→ (𝑖𝑛𝑡𝑒𝑔𝑒𝑟 → key)

𝑏𝑜𝑥𝑒𝑑 ↦→ (𝑖𝑛𝑡𝑒𝑔𝑒𝑟 → key)

𝑏𝑜𝑥𝑒𝑑 ↦→𝑚

𝑏𝑜𝑥𝑒𝑑 ↦→𝑚

Removed by PEA

Materialized by PEA

Figure 1. Simplified control flow(→) and data flow (d) of
put. The boxed allocation is moved to latest point before
boxed becomes materialized and loads are replaced with
scalars from the virtual state.

One may now ask: could the escaping node 𝑒𝑎 be used to
represent the materialization too, i.e. is𝑚 = 𝑒𝑎? This is not
generally the case – to see why, consider the merge node,
which has multiple predecessors. A merge node 𝑗 can implic-
itly trigger an escape in order to enforce a consistent state in
its successor node. First, a value only survives the merge if it
exists in all predecessor states. Then, if an object is virtual in
all predecessors, it can remain virtual after the merge. But,
if the object is materialized in at least one predecessor, then
it must be materialized in the others too (for simplicity, this
is what most PEA implementations do). Formally:

𝜄 (𝑥,𝑦) =


(𝑓1 � 𝜄 (𝑥1, 𝑦1), ... , 𝑓𝑛 � 𝜄 (𝑥𝑛, 𝑦𝑛))
if 𝑥 = (𝑓1 � 𝑥1, ... , 𝑓𝑛 � 𝑥𝑛)
∧𝑦 = (𝑓1 � 𝑦1, ... , 𝑓𝑛 � 𝑦𝑛)

𝜑 (𝑚1,𝑚2) otherwise

O1 ⊓ O2 = [𝑎 ↦→ 𝜄 (𝑥,𝑦) |∀𝑎.𝑎 ↦→ 𝑥 ∈ 𝑂1 ∧ 𝑎 ↦→ 𝑦 ∈ 𝑂2]
O𝑜𝑢𝑡 ( 𝑗) = O𝑖𝑛,1 ( 𝑗) ⊓ . . . ⊓ O𝑖𝑛,𝑝 ( 𝑗)
Above, for brevity, 𝜑 is a Phi function from static single-

assignment (SSA) form, which takes a different value depend-
ing on the predecessor by which the merge was reached – it
can be trivially translated to a CFG with variables [43].

In the definition of 𝜄, if the allocation was materialized as
𝑚1 on one predecessor, and virtual on the second predecessor,
then it must be materialized to a node 𝑚2 on the second
predecessor too. Observe the CFG with a merge node. The
allocation 𝑎 escapes in the left branch at the store node, but
not on the right branch. Here, only store esc−−→ 𝑎, but both

store mat−−→ 𝑎 and end2 mat−−→ 𝑎, so allocations are inserted in
both branches.

if

new 𝑎

store . . .

end1 end2

merge

𝑎 ↦→ ⊥

𝑎 ↦→ 𝜑 (𝑚1,𝑚2)

𝑎 ↦→𝑚2

𝑎 ↦→ ⊥𝑎 ↦→𝑚1

𝑎 ↦→ ⊥𝑎 ↦→ ⊥

𝑎 ↦→𝑚1

We can now inspect how the virtu-
alization O changes at the edges be-
tween nodes in the CFG of the put pro-
cedure in Figure 1, The object behind
the boxed allocation is virtual through-
out the loop, and allows simplifying the
check inside the loop. The store node
causes the object to escape after the
loop exit ( esc−−→), and the newly inserted
red/bold allocation node is that allocation’s materialization
node ( mat−−→).

3 Algorithm Description
The main idea behind our Interprocedural Partial Escape
Analysis (IPEA) algorithm is to predict the materialization
frequency after inlining, and use it to adjust the inlining-
benefit approximation of a callee. The frequency of materi-
alizations determines the number of dynamic allocations at
runtime. We first discuss how IPEA locates materializations
across the entire call tree instead of inside a single procedure.

putclient

Materialization
new key

invoke put

. . .

. . .

invoke equals

return

. . .

equals store key

return

return

==

. . .

. . .

Inject State

Inject State

Figure 2. Call tree representation of put and client code and
key pointing to its interprocedural materialization.

3.1 Interprocedural Partial Escape Analysis
Interprocedural analysis accounts for the relationships be-
tween procedures, so we shift our perspective from an indi-
vidual procedure body to a set of procedure bodies logically
assembled in call tree representation. Revisiting our generic
ListMap#put procedure from Section 2, Figure 2 now shows
the call tree of client, put and equals and their respective
simplified Intermediate Representations (IR). Recall that PEA
could postpone the materialization of the key parameter of
put after the loop and before it is written to the array. In
order to find this materialization location, the virtualization
states must be shared across procedure boundaries. We call
this virtual state injection, or virtual injection.
In the example in Figure 2, the parameter key of the put

procedure originates from the allocation in the client code.
To simulate the effects of inlining, we can intuitively treat the
parameter node as an extension of the allocation in the caller.
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If key is still virtual at the callsite, we can replace the pa-
rameter with a virtual object originating from the allocation
in the client. From this point on, when a materialization is
triggered for the replaced parameter node, we know that this
is exactly where PEA will insert the allocation after inlining.
Similarly, when the entire procedure body is completely

processed, the callsite must reacquire the virtual state from
its callee, i.e. the virtual state must be re-injected back into
the caller. Let’s assume the equals procedure has yet to be
inlined – the key object is also passed to the equals pro-
cedure inside put. If the equals procedure materializes its
parameter, there is no benefit in inlining put. Our analy-
sis must therefore first process the entire equals procedure,
and re-inject the virtual state into put to determine that key
would stay virtual until key is materialized by the store node.

Having provided an intuition of IPEA on the client code,
we now detail how the intraprocedural analysis is extended
to allow the prediction of materializations after inlining.
To properly model O across procedure boundaries, invoke
nodes no longer cause escaping – instead, invokes trigger
a recursive analysis in the subtree of the call tree. All other
nodes that trigger escaping are treated as in ordinary PEA.
We also add an additional state component on top of the

local analysis state O𝑛 , namely the shared global state mate-
rializationsM, which maps each allocation in the call tree
to the set of its materializations in the call tree. Our new
compositional state S is now defined as follows:

S(𝑛) = ⟨O(𝑛),M⟩
M : A→{𝑛 | 𝑛 mat−−→ 𝑎 ∧ 𝑎 ∈ A}

where O(𝑛) is a per-node state, andM is a shared global
state across the entire call tree.M holds the desired analysis
results, and is later used to drive inlining decisions. When
materializations are determined, i.e. after IPEA finishes pro-
cessing a procedure (a call-tree node), for any node 𝑛 such
that 𝑛 mat−−→ 𝑎, we updateM accordingly:

M[𝑎] =M[𝑎] ∪ {𝑛}
To formalize the notion of the call tree, we rely on the relation
𝑐𝑎0,...,𝑎 𝑗

calls−−−→ 𝑝0, ... , 𝑝 𝑗 , which denotes that an invoke node
𝑐𝑎0,...,𝑎 𝑗

with arguments 𝑎0, ... , 𝑎 𝑗 calls the callee procedure
whose parameters are nodes 𝑝0 to 𝑝 𝑗 .
State-update rules. IPEA processes specific nodes, namely
the invoke, parameter and return nodes, in a different way.
When we encounter an invoke node 𝑐𝑎0,...,𝑎 𝑗

with arguments
𝑎0, ... , 𝑎 𝑗 such that 𝑐𝑎0,...,𝑎 𝑗

calls−−−→ 𝑝0, ... , 𝑝 𝑗 , we define the up-
date rules in the callee as follows:

O𝑜𝑢𝑡 (𝑝𝑖 ) =


O𝑖𝑛 (𝑝𝑖 ) [𝑝𝑖 ↦→ (𝑓0 � 𝑥0, ... , 𝑓𝑘 � 𝑥𝑘 )]
if 𝑎𝑖 ↦→ (𝑓0 � 𝑥0, ... , 𝑓𝑘 � 𝑥𝑘 ) ∈ O𝑖𝑛 (𝑐𝑎0,...,𝑎 𝑗

)
O𝑖𝑛 (𝑝𝑖 ) otherwise when 𝑐𝑎0,...,𝑎 𝑗

calls−−−→ 𝑝0, ... , 𝑝 𝑗

The above states that the initial state of a formal parameter
is virtualized if the corresponding argument in the caller
remained virtual, and materialized otherwise.

The following illustrates the rule on the put procedure:

(a) Callsite

invoke put

(b) Callee

new boxed
. . .

𝑝𝑖

store list[last++] == 𝑝𝑖

Caller Context

𝑏𝑜𝑥𝑒𝑑 ↦→ (𝑖𝑛𝑡𝑒𝑔𝑒𝑟 → key)
𝑝𝑖 ↦→ (𝑖𝑛𝑡𝑒𝑔𝑒𝑟 → key)

𝑝𝑖 ↦→𝑚

At the callsite, the first argument is mapped to the new
boxed node, so the corresponding formal parameter in the
callee is mapped accordingly. After the array-write is pro-
cessed, thematerializationmapwill contain a single mapping
M ≡ {boxed ↦→ {store list}}, as indicated in Figure 2.

Let the set R of return nodes consist of nodes 𝑟𝑥 , such that
the return node 𝑟𝑥 returns the value of node 𝑥 . Handling a
return node 𝑟𝑥 serves two purposes. The first is to re-inject
the state of the callsite arguments back into the caller. If a
formal parameter gets materialized, the callsite argument
must also be materialized. Second, if a virtual object is re-
turned from the callee, the invoke node can be mapped to a
virtual object in the caller thereafter.

We use a helper function 𝜋 to capture how the virtualiza-
tion state of the parameter 𝑝𝑖 affects the callee state O:
𝜋 (O, 𝑝𝑖 ) = O[𝑎𝑖 ↦→ 𝑣] such that ∃𝑐𝑎0,...,𝑎 𝑗

calls−−−→ 𝑝0, . . . , 𝑝 𝑗∧
𝑝𝑖 ↦→ 𝑣 ∈ O𝑜𝑢𝑡 (𝑟𝑥 ) ∧ 𝑟𝑥 ∈ R

The above says that for any parameter, there must be a return
node that mentions that parameter’s state, and that the cor-
responding callsite argument must be mapped accordingly.

We use another helper 𝜚 to capture how the return value
alters the virtualization state of the callee:
𝜚 (O, 𝑐𝑎0,...,𝑎 𝑗

) = O[𝑐𝑎0,...,𝑎 𝑗
↦→ 𝑣] 𝑐𝑎0,...,𝑎 𝑗

calls−−−→ 𝑝0, . . . , 𝑝 𝑗∧
𝑝0, ... , 𝑝 𝑗 ∈ O𝑜𝑢𝑡 (𝑟𝑥 ) ∧ 𝑥 ↦→ 𝑣 ∈ O𝑜𝑢𝑡 (𝑟𝑥 ) ∧ 𝑟𝑥 ∈ R

The above says that for any invoke 𝑐𝑎0,...,𝑎 𝑗
, there must be a

return node 𝑟𝑥 in the corresponding callee whose returned
value 𝑥 is mapped to some state 𝑣 – the virtualization state
of the invoke 𝑐𝑎0,...,𝑎 𝑗

must be remapped to that state 𝑣 .
The rule for invokes is now concisely expressed as:
O𝑜𝑢𝑡 (𝑐𝑎0,...,𝑎 𝑗

) = 𝜚 (𝜋 (... 𝜋 (O𝑖𝑛 (𝑐𝑎0,...,𝑎 𝑗
), 𝑝0), ... , 𝑝 𝑗 ), 𝑐𝑎0,...,𝑎 𝑗

)
The following figure illustrates the previous rule – the

state of the object 𝑎 changes in the callee foo (but is not
materialized), so the analysis continues with the new virtual
state of 𝑎. Moreover, the return object 𝑥 is created inside the
scope of the callee, and remains virtual in the callee.

(a) Callsite (b) Callee

merge

return

invoke foo

new x
new a

𝑎 ↦→ (𝑓1 → 𝑣1)

𝑎 ↦→ (𝑓1 → 𝑣2)
𝑖𝑛𝑣𝑜𝑘𝑒 𝑓 𝑜𝑜 ↦→ (𝑓2 → 𝑣3)

𝑝0

Caller Context

𝑝0 ↦→ (𝑓1 → 𝑣2)
𝑥 ↦→ (𝑓2 → 𝑣3)

load f

. . .
. . .

In the preceding rule, we implicitly assumed that there is
a single return node 𝑟𝑥 in any callee. Indeed, the functions 𝜋
and 𝜚 are not defined when there are multiple return nodes.
To address this, we simply transform the CFG of each callee
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by replacing all the return nodes 𝑟𝑥𝑖 with a merge node 𝑗

followed by a single return node 𝑟𝜑 (𝑥0,...,𝑥𝑘 ) (which, in fact,
reflects what happens during inlining). This way, the virtual-
ized state persists only if all return nodes return a virtualized
object, as per the rule for merge nodes from Section 2.1.
Pseudocode. The code for the IPEA algorithm, which pro-
duces the map of materializationsM for a call tree T , is
shown in Algorithm 1. The call runIPEA(root(T ), {}) starts
the algorithm. It traverses the CFG in a reverse postorder,
using the extended set of rules for updating the virtualization
state. If it encounters an invoke, it first calls runIPEA on the
child node of the call tree before updating the state in the
caller. In each call tree node, CFG traversal must be repeated
until reaching a fix point [50]. Every time a call tree node
reaches a fix point, the materialization mapM is updated.
Algorithm 1: Interprocedural PEA
input : Call tree T
output : MaterializationsM : 𝑎 → {𝑛 | 𝑛 mat−−−→ 𝑎 ∧ 𝑎 ∈ A}
Procedure runIPEA(𝐶𝐹𝐺,M) is
S𝑖𝑛 (𝑠𝑡𝑎𝑟𝑡) ← ⟨{},M⟩
while not fixedPointReached() do

for node in reversePostOrder(CFG) do
if node is Invoke then

runIPEA(𝐶𝐹𝐺 (𝑛𝑜𝑑𝑒),M)
𝑆𝑜𝑢𝑡 (𝑛) ← process(𝑛𝑜𝑑𝑒,S𝑖𝑛 (𝑛𝑜𝑑𝑒))

for (n,a) such that n mat−−−→ a do
M[𝑎] ← M[𝑎] ∪ 𝑛

3.2 Materialization-Frequency Reduction
In our running example from Section 2, the reduction of key
allocations depends on the workload in the client code –
if the client only occasionally inserts a previously unseen
key, then the number of allocations is reduced considerably.
To reflect this in the inlining benefit, we use the material-
ization mapM and node-frequency profiles to compute the
materialization-frequency reduction:

FR(𝑎) = 𝐹 (𝑎) −
𝑚

mat−−→ 𝑎∑
𝑚 𝐹 (𝑚)

𝐹 (𝑎) ∈ [0, 1] (1)

Above, 𝐹 (𝑛) is the execution frequency of a node relative to
the entry to the root compilation unit in the call tree. Note
that the frequencies of materialization nodes are summed
– correctness is given by guarantees a PEA invariant: For
any two nodes 𝑛1 and 𝑛2 that materialize the same allocation
node 𝑎, there is no execution path that passes both through
𝑛1 and 𝑛2. In other words, for a single 𝑎, every execution
path has at most a single node 𝑛, such that 𝑛 mat−−→ 𝑎.

3.3 Integrating IPEA into the Incremental Inliner
We extended an existing implementation of the incremental
inliner [35] with our analysis. We now present a simplified
description of the existing inliner, and show how it was
enhanced. The incremental inliner is representative of typical

inlining algorithms, and we believe that our analysis can be
easily applied to similar inliners.
Each time a method is submitted for compilation, that

method becomes the root compilation unit of its respective
call tree. The inliner incrementally expands the call tree dur-
ing an expansion phase. Expanding means picking a leaf node
in the call tree, and attaching the callees of that node as chil-
dren to the call tree. A call-tree node is initially unexplored,
and called a cutoff node. After the expansion phase, the in-
liner assigns cost-benefit to each call-tree node. Based on the
cost-benefit, some call-tree nodes are inlined during the inlin-
ing phase, and the inliner subsequently repeats these stages.
This cycle continues until reaching a budget limit [35].

IPEA as described in Algorithm 1 is inserted into the in-
liner after expansion and cost-benefit assignments, but be-
fore inlining (see Algorithm 2). We note that each invoke
that corresponds to a cutoff node is considered an analysis
boundary, and is treated as a regular escape.

Algorithm 2: Integration of IPEA
input : Root compilation unit 𝑟𝑜𝑜𝑡
Procedure incrementalInliner(root) is

while continueInlining() do
expansion()
M ← runIPEA(root)
computeBenefits(𝑟𝑜𝑜𝑡)
for 𝑎 ∈ 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑁𝑜𝑑𝑒 do

𝑓 𝑟 ← FR(𝑎)
boostSubtree(𝑓 𝑟 )

inlining()
Consider the compilation of the client procedure from

Section 2. Its inlining schedule will typically be as follows:
(i) Build initial call tree for client, add put as a cutoff.
(ii) Expand put, add equals as a cutoff node, expand equals.
(iii) Run IPEA on the call tree (client, put, and equals).
(iv) Compute cost-benefit of put and equals.
(v) Boost both put and equals based on the reduction in

materialization frequency of key.
(vi) Decide to inline both put and equals.

Benefit. Before inlining, each node in the call tree is as-
signed a benefit. This benefit is a best-effort estimate of the
performance gains from inlining, and it guides the inlining
decisions. Our analysis adjusts the benefit assignment by
incorporating materialization-frequency reduction. Our new
benefit function is the following:

B(𝑐𝑎0,...,𝑎 𝑗
) = B ′(𝑐𝑎0,...,𝑎 𝑗

) · max
𝑖∈0,..., 𝑗

(𝛿𝑚𝑏)FR(𝑎𝑖 )

where B ′(𝑐𝑎0,...,𝑎 𝑗
) represents the previous benefit function

for a node at callsite 𝑐𝑎0,...,𝑎 𝑗
, and 𝛿𝑚𝑏 is the materialization

boost, a tunable hyperparameter that quantifies how much
the inliner should value the reduction in materialization fre-
quency. A call tree node is boosted relative to the frequency
reduction FR(𝑎) if 𝑎 escapes into the invoke 𝑐𝑎0,...,𝑎 𝑗

. For
example, in the earlier client method, the boost FR(key)

18



Inlining-Benefit Prediction with Interprocedural Partial Escape Analysis VMIL ’22, December 05, 2022, Auckland, New Zealand

is applied to both equals and put, since key escapes to both,
and inlining both of them is required to reduce allocations.
Expansion phase. In Algorithm 2, we applied runIPEA to
the point after the expansion phase. However, since each ex-
pansion phase expands multiple cutoff nodes of the call tree,
we can also incrementally run IPEA on the subtree affected
by the expansion. The advantage of doing so is that we can
boost the expansion priority of cutoffs at which objects es-
cape – each cutoff node has an associated expansion priority,
which decides how soon that node will be expanded.

During IPEA, we track an additional state component E
for allocations that escape into cutoff nodes:

E : {𝑐𝑎0,...,𝑎 𝑗
is a cutoff} → {𝑎𝑖 |𝑐𝑎0,...,𝑎 𝑗

esc−−→ 𝑎𝑖 }
The cutoff-node priorities P are then continuously updated
according to the following equation:

P(𝑛) = P ′(𝑛) · 𝛿𝑒𝑏 · |E(𝑛) |
where the new priority P boosts the vanilla (cost-benefit-
based [35]) priority P ′ by the number of escaping objects.
This equation also introduces an additional hyperparameter
𝛿𝑒𝑏 , or escape boost, which determines the expansion priority
given to virtual objects that are escaping.
Cutoffweight. In an idealized analysis, the entire call tree is
available, and no invoke causes an object to escape. However,
in practice, expansion budget is often insufficient, and the call
tree is usually infinite due to recursion, meaning that at least
some cutoff nodes remain in the call tree.Whenever an object
escapes at a cutoff node, this can be for two reasons: either
the object would really be materialized after expansion, or
the object is materialized only because we did not expand the
callee yet. To prevent over-penalizing such materializations,
we found it useful to optimistically assume that an object
that escapes at a cutoff may survive. We,therefore, updated
the frequency-reduction expression from Equation (1) with
the cutoff weight hyperparameter 𝛿𝑐𝑤 ∈ [0, 1]:

FR(𝑎) = 𝐹 (𝑎) −
𝑚 mat−−−→ 𝑎∑

𝑚 𝜙𝑚 · 𝐹 (𝑚)
𝐹 (𝑎) 𝜙𝑚 =

{
𝛿𝑐𝑤 𝑚 is cutoff
1 otherwise

We discuss the tuning of this heuristic in Section 4.

4 Evaluation
The goal of the evaluation is to show improvements over
flow-insensitive escape analysis techniques in terms of run-
time, code-size and compilation times, examine the profiled
dynamic number of allocations, and the effect of heuristics.
We compare our Interprocedural PEA (IPEA) to a Base,

which runs only the optimization-driven inliner [35], that is
run in every configuration. Our second comparison is Partial
Escape Selective Inlining (PESI), the control flow insensitive
inlining technique implemented in GraalVM.

Decreasing the runtime is the principal goal of our analysis
phase.We emphasize the GraalVM compiler has been already
heavily optimized and most performance-critical methods

are inlined. Nevertheless, we consider improvements of > 5%
to be significant and valuable incremental contributions to
GraalVM.While secondary to runtime performance, keeping
code size low is meaningful for Native Image, especially for
one of the main use cases of cloud deployment [49, 53]. Build
time is an important measurement, as PEA is an expensive
analysis for large procedures, even intraprocedurally.
Methodology. All reported results were run on an Intel(R)
Xeon(R) E5-2699 v3 @2.30 GHz with 72 cores and 256GB
of RAM. The benchmarks were bound to 36 CPUs on the
same NUMA node and the maximum Heapsize was capped
at 8GB. All benchmarks were run on JDK 17 except for the
Renaissance-spark jobs.1 Relative improvements between
𝑇𝑜𝑙𝑑 and𝑇𝑛𝑒𝑤 are always computed as 𝑇𝑜𝑙𝑑−𝑇𝑛𝑒𝑤

𝑇𝑜𝑙𝑑
unless stated

otherwise and averaged improvements use geometric mean.

Benchsuite Version JDK
Renaissance [40] 0.14.1 17
Renaissance-spark 0.11.0 11

Dacapo [6] 9.12 mr1 17
ScalaBench [47] 0.1.0 17

Runtimes. Plot in Figure 3
compares relative runtime per-
formances across all bench-
marks (lower is better). We in-
clude an additional column for
IPEA OPT, where the best hy-

perparameters are chosen for each individual benchmark, in-
stead of optimizing for the entire suite. We observe that some
types of benchmarks react strongly to IPEA, where bench-
marks improve over PESI, like scalap - 5.5%, scalac -5.74%,
finagle-chirper -7.74% avrora -16.07% and mnemonics -
24.62%. In practice, some benchmarks show no performance
difference when optimizing for allocation reduction. This
may be the case for more CPU-bound applications, or code
sections that perform allocations are hot enough to be inlined
based on frequency and code size metrics. Further, we see
that individual benchmarks have more optimization oppor-
tunities: Benchmarks like kiama, gauss-mix, par-mnemonics
and fop leave major improvements of up to 16% between
IPEA and IPEA OPT unrealized. This suggests future work
on this topic is of relevance. Some benchmarks exhibit regres-
sions, factorie by +3.35%, db-shootout +5.07% and most
notably xalan +16.07%. For both db-shootout and factorie,
these regressions can be eliminated by choosing better pa-
rameters. We discuss xalan in more depth in the heuristic
tuning section.
Code size. See Figure 4 for codesize and build time re-
sults. IPEA decreases code size almost across the board com-
pared to PESI, with the only exceptions being scalariform,
scalaxb and scala-doku. On average our code size has de-
creased by 1.81%. This suggests our analysis has increased
inlining precision, were overall less, but more impactful pro-
cedures are inlined 2.

1Renaissance-spark benchmarks did not run on JDK 17 at time of
experimentation:page-rank, movie-lens,db-shootout, neo4j-analytics, gauss-
mix. rx-scrabble, dotty, naive-bayes, als.
2We stress that more inlining does not always cause larger code.
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Figure 3. Relative runtime results (lower is better) in comparison to BASE of PESI, IPEA, and IPEA OPT where hyperparameters
are chosen individually for each benchmark to achieve the lowest runtime. Some benchmarks like mnemonics, finagle-chirper,
and page-rank reach strongly to allocation reductions, and IPEA outperforms PESI on 25 of the 36 benchmarks and significantly
outperforms with an improvement of >5% on 6 benchmarks, while only having one significant regression for xalan.
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Figure 4. Build times and Code size (lower is better) of all configurations relative to BASE, where 31 of the 36 benchmarks
have a lower codesize with geomean 1.81% and up to 4.98% comparing IPEA to PESI. Similarly, 27 benchmarks have lower
build times with geomean improvement of 1.62% up to 8.2% faster over PESI.
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Build time. Build time is kept low and shows an improve-
ment over PESI by a geomean of 1.62% Mostly this is a result
of not running IPEA for every inlining round and further
throttling IPEA if procedures become increasingly large. The
largest build time increases are observed for benchmarks
tmt with +7.7% and, scalariform with +5.3%.
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We differentiate two factors
for differences in build time.
First, the accumulated time
spent in performing the analy-
sis, shown in the figure on the
right, and second the effects
of inlining making other opti-
mizations slower due to larger
procedure bodies . Notice that
IPEA is part of the incremental
inliner, causing more expan-
sion of the call tree and more
inlining rounds, in addition to
the time spent within IPEA it-
self. Nevertheless, considering
both factors results in lower overall average build time.
Dynamic allocations at runtime. For more insight on the
performance improvements and the effects of our analysis,
we profiled the allocation sites for dynamic memory allo-
cated at runtime, see Table 1. We stress that the number of
bytes allocated is merely a fraction of the effects on runtime.
Take the benchmark scalap. We measured higher runtimes
of 5% with PESI due to code bloat by over-inlining to elimi-
nate allocations, and therefore a higher number of instruc-
tion cache misses. We now have faster runtime, even though
more bytes are allocated at runtime. Clearly, IPEA has taken
other metrics into account before inlining to eliminate al-
locations. Concurrently, benchmarks like mnemonics and
finagle-chirper seem to directly benefit from the reduc-
tion in allocations with 24.62% and 7.74% faster runtimes.
However, we still see inconsistent results in some scenar-
ios, where factorie has a 15% reduction in allocations, yet
is 3.35% slower – allocation reduction is overvalued . We
argue these results show that it is less about the number
of allocations (allocations are cheap) and more about how
these allocations interact with other elements of the code
and feel our approach is a step in the right direction and
can be further refined. While not displayed in this data, our
anecdotal experience in analyzing the allocation sites has
shown that where the allocations occur with PESI vs IPEA
are quite different, even if the amount of memory allocated
is similar and is worth further investigating.
Heuristic Tuning. Recall the introduction of three primary
hyper-parameters that we tune for: materialization boost
𝛿𝑚𝑏 , escape boost 𝛿𝑒𝑏 and cutoff weight 𝛿𝑐𝑤 . The parameters
were tuned across all benchmarks in all suites. For brevity’s
sake, we show only a handful in Figure 5. Strong performance
reactions are detected for gauss-mix and kiama where we

Table 1. Selected runtime allocation profiling results. Allo-
cation reduction for all benchmarks can be found here [54].

BenchmarkBase PESI IPEA ΔAlloc ΔRuntime

avrora 2.940 1.486 2.759 +85.6% -16.07%
fop 7.922 7.374 7.405 +0.41% -2.66%
pmd 125.3 120.4 114.0 -5.34% -2.23%
xalan 72.59 72.48 70.81 -2.3% +16.17%
geomean +6.5% -1.33%
akka-uct 803.1 795.9 797.3 +0.17% -0.23%
fin-chir. 1584 1527 1467 -3.91% -7.74%
fj-kmea. 576.4 576.2 577.2 +0.19% -2.4%
fut-gen. 75.34 76.19 114.2 +50.0% +1.74%
gauss. 110.2 108.1 108.4 +0.3% +0.16%
mnem. 143.7 156.5 133.4 -14.73% -24.62%
mo-lens 324.5 323.2 319.1 -1.26% -2.55%
p-rank 294.6 282.4 266.3 -5.68% +6.13%
geomean -1.9% -2.07%
apparat 22.95 22.41 22.39 -0.09% -4.14%
factorie 116.3 106.7 90.69 -15.05% +3.35%
scalac 20.98 20.75 19.77 -4.73% -5.74%
scalap 6.664 6.493 6.573 +1.23% -5.78%
geomean +2.04% -1.61%
total +1.02% -1.79%
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Figure 5. Selected grid search of hyper parameters, lower is
better. x-labels: (𝛿𝑒𝑏 : 𝛿𝑚𝑏 : 𝛿𝑐𝑤). Grid search plots for entire
benchmark suite can be found here [54].

were not able to extract the complete potential when opti-
mizing for the entire suite. Our only major regression xalan
experiences a slowdown even with a reduction in alloca-
tions. It is the only benchmark that experiences slowdowns
with any parameters in our grid search. We remark that
single-threaded performance of xalan with IPEA performs
the same as PESI. Our running hypothesis is that the different
inlining choices improve sequential code performance, but
decrease the periods between inter-thread synchronizations,
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which causes more contention. In practice, 𝛿𝑒𝑏 = 6, 𝛿𝑚𝑏 = 20
and 𝛿𝑐𝑤 = 0 performed the best on average. Interestingly, as-
signing a materialization caused by an unexplored invoke to
weight 0 has the best performance. Intuitively, this helps in
finding optimization opportunities for objects that get passed
deep into the call graph. If an inlining decision is made based
on this value, the reduction in materialization frequency is
not guaranteed but the materialization is certainly delayed.

5 Related Work
It can be argued that inlining and escape analysis are the cor-
nerstone of high-level compiler optimizations, and crucial for
high-level programs and frameworks that involve (parallel)
data-processing [30, 34, 38, 58], streaming [24, 29, 37], and
functional programming patterns in particular [22, 28, 31, 52].
In this section, we give a brief overview of related literature
ranging from escape analysis to inlining with cost-benefit
estimations, and the relationship between the two.
Cost-benefit based inlining. Some of the earliest work
on cost-benefit based inlining with a fixed budget is intro-
duced by Ayers et al. [3] and shortly after by Arnold et al. [2].
While their cost model is conceptually similar to modern ap-
proaches, the benefit model used is straightforward – Ayers
et al. infer the benefit based on the ability of the callee to be
specialized. They use a similar approach to Ball [4] that uses
data-flow analysis on the procedure arguments to predict
the effects of inlining when propagating a constant to the
callee. Arnold et al. use the profiled callsite frequency as the
benefit metric to estimate the direct benefits of inlining by
removing linkage overhead. Dean & Chambers [13] showed
that the indirect benefits are equally, if not more, important
than the direct benefits and perform inlining trials. The re-
sulting optimized body is analyzed to predict benefits. With
the injection of virtual state across procedure boundaries,
IPEA can be seen as a sophisticated inlining trial.
Escape analysis. Choi et al. [11], Gay & Steensgaard [18],
Kotzmann et al. [25] , Blanchet [8], andWhaley&Rimard. [55]
all introduce a form of interprocedural escape analysis. These
techniques inject states from a caller into the callee and vice
versa. Both Blanchet and Kotzmann et al. suggest inlining
based on the analysis results [8, 25]. Gay & Steensgaard,
Whaley & Rimard, and Choi et al. use the acquired informa-
tion only for stack allocation and lock elimination [11, 18, 55].
Choi et al. continue to describe a flow-sensitive interproce-
dural escape analysis for higher analysis accuracy, but the
analysis is still only used for making binary escapability
assessments [11]. Attempting to predict the frequency of
dynamic allocations statically is never considered.
Profiling allocation sites. Shankar et al. [5] introduce JOLT,
a profiling and inlining algorithm that targets the reduction
of object churn with capture and control analysis introduced
by Dufour et al. [17]. JOLT profiles object lifetimes dynam-
ically and directly from the garbage collector. The data is

used in a standalone cost-benefit inlining phase. Our evalua-
tion showed multiple separated inlining phases can produce
inconsistent results. However, combined dynamic object pro-
filing and materialization frequency could further amplify
the accuracy of the cost-benefit model.
Inlining meets Escape Analysis. Dealing with dynamic
procedure calls can be challenging for program analysis [23].
Devirtualizing call sites allow further exploration of the call
tree. Sewe et al. study the prediction of inlining effects on
the specialization of the call tree, which in turn enables more
inlining [46]. This specialization of the call tree is analogous
to delaying materializations since the type of a virtual object
is always known. This fact is also used by the optimization-
driven incremental inliner mentioned throughout this paper
by Prokopec et al. [35, 42], which runs PEA only intrapro-
cedurally in the root procedure in between inlining rounds.
This PEA runs completely disjoint from IPEA and aims to
devirtualize invokes on virtual objects, and propagate type
information to the callee, if a parameter is virtual at a callsite.
In a similar vein, Interflow by Shabalin et al. [48] fuses

multiple techniques, including PEA, code duplication, and
inlining to optimize collection-based Scala code for Scala
Native. They report performing PEA in the same pass as
inlining and try to always inline procedures with virtual ob-
jects at the callsite to delay the materialization. We improve
on this shared concept by additionally computing materi-
alization frequency, yet this again prompts the question –
can we quantify the benefit of delaying a materialization
and use value in the cost-benefit function for inlining predic-
tion? Can we not only estimate the direct effects of inlining
on allocation reduction but also encapsulate the effects of
other intraprocedural optimization phases that aim to reduce
runtime allocations (like code duplication)?

6 Conclusion
Wepresented a novel algorithm based on interprocedural par-
tial escape analysis, which computes object-materialization
frequencies and predicts the benefits of inlining. We pro-
posed several heuristics that rely on allocation-frequency re-
duction to guide inlining decisions.We tuned these heuristics
across 36 benchmarks from 3 benchmark suites and found
that they considerably improve the runtime on 6 benchmarks,
with an improvement of over 5% and up to 24.62%. In almost
all cases, our IPEA-based inlining resulted in smaller image
sizes compared to existing purely PEA-driven approaches.
The tuning also showed that trading-off run times, compila-
tion times and generated code-size can individually improve
each of these metrics. Decent compilation overhead suggests
that our algorithm can improve performance in Just-in-Time
compilation with some re-tuning. Furthermore, we found
compelling evidence that factors beyond allocation reduc-
tion may be used to predict performance improvements, and
we believe this is a promising research direction.
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