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Abstract—Inlining is one of the most important compiler
optimizations. It reduces call overheads and widens the scope of
other optimizations. But, inlining is somewhat of a black art of an
optimizing compiler, and was characterized as a computationally
intractable problem. Intricate heuristics, tuned during countless
hours of compiler engineering, are often at the core of an
inliner implementation. And despite decades of research, well-
established inlining heuristics are still missing.

In this paper, we describe a novel inlining algorithm for
JIT compilers that incrementally explores a program’s call
graph, and alternates between inlining and optimizations. We
devise three novel heuristics that guide our inliner: adaptive
decision thresholds, callsite clustering, and deep inlining trials.
We implement the algorithm inside Graal, a dynamic JIT
compiler for the HotSpot JVM. We evaluate our algorithm on a
set of industry-standard benchmarks, including Java DaCapo,
Scalabench, Spark-Perf, STMBench7 and other benchmarks,
and we conclude that it significantly improves performance,
surpassing state-of-the-art inlining approaches with speedups
ranging from 5% up to 3×.

Index Terms—just-in-time compilation, inlining, polymor-
phic dispatch, cost-benefit analysis, optimization-driven inlining,
priority-based inlining, inline subtitution, inline expansion

I. INTRODUCTION

The inline substitution replaces callsites with the bodies of

the respective callees [74]. In a compiler that relies mainly

on intraprocedural analysis, the benefit of inlining is the

enabling of other optimizations [18, 36, 47]. Although, this

transformation is straightforward, deciding which methods to

inline requires intricate heuristics – Jones and Marlow called

inlining a "black art" [47]. While a simplified formulation of

inlining can be reduced to the Knapsack problem [74], its main

difficulty is estimating the time savings from inlining a callee.

Most inlining algorithms follow a similar pattern: use a heuristic

to assign a benefit to each callsite, and inline them priority-wise

until a budget limit is hit [13, 6, 5]. Optimization prediction is

one way of assessing the benefits, which predicts the execution

time savings by simulating the optimizations triggered by

inlining – this was done in Algol [7] and Scheme [18], for

example. The second way used to estimate benefits is by

profiling callsite frequencies, as in CLU, C and Java, to name

a few examples [74, 13, 33, 32]. We give a more detailed

overview of related work in Section VI.

In this paper, we show how to improve existing inlining

techniques for JIT compilers by proposing a novel online (as

defined in Section II) inlining algorithm, which improves opti-

mization prediction by incrementally exploring and specializing

the program’s call tree, and clusters the callsites before inlining.

We report the following new observations:

• In many programs, there is an impedance between the

logical units of code (i.e. subroutines) and the optimizable

units of code (groups of subroutines). It is therefore

beneficial to inline specific clusters of callsites, instead

of a single callsite at a time. We describe how to identify

such callsite clusters.

• When deciding when to stop inlining, using an adaptive

threshold function (rather than a fixed threshold value)

produces more efficient programs.

• By propagating a callsite’s argument types throughout the

call tree, and then performing optimizations in the entire

call tree, estimation of the execution time savings due to

inlining becomes more accurate. These optimizations can

improve the type precision at the other callsites, so this

gets repeated until reaching a fixpoint. A callsite records

its optimizations, hereby calculating its benefit. We call

this deep inlining trials.

Based on these observations we derived a novel inlining

algorithm and implemented it in the Graal compiler1 [20, 89,

64]. The contributions in this paper are as follows:

• We present an online inlining algorithm, which inlines

clusters of related callsites in a priority order, and makes

inlining decisions based on a callsite’s benefit and cost

(Section III and Section IV). The benefit is estimated

from a callsite’s execution frequency and its optimization

potential, determined with a new technique named deep

inlining trials. The inlining decisions rely on adaptive

threshold functions (Section IV).

• We implemented the algorithm inside a production quality

dynamic JIT compiler called Graal, which is a replace-

ment for HotSpot’s C2 optimizing compiler. We present

heuristics and techniques that we used to tune the quality

of the inlining decisions (Section IV).

• We evaluated the algorithm with the Java DaCapo [9],

Scala DaCapo [78], and several other benchmark suites

in terms of the performance of the generated code. We

compare the results against the HotSpot’s C2 compiler

as well as the inlining algorithm used in the open-

source version of Graal [3], and we report performance

1 Artifact available at: https://doi.org/10.5281/zenodo.2328430
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improvements ranging from 5% up to 3×. We present

a performance breakdown of the heuristics used in the

algorithm, showing that each component in our algo-

rithm (cluster detection, deep optimization prediction, and

adaptive threshold functions) improves the performance

of the generated code (Section V).

II. PROBLEM STATEMENT

Scheifler showed that the inlining problem is NP-hard by

reducing it to the Knapsack problem [74], where the Knapsack

items represent the methods in a program, the weight of each

item is the method size, and the value is the decrease in the

runtime (i.e. benefit). The online inlining problem that we

formulate here is more complicated because it only has access

to a subset of callsites at any given point in time.

Online inlining problem. Given a set Π of program methods

Mi, a stream of compilation requests for a subset C of those

methods, and a maximum program size S, the objective is

to assign a set of inlining decisions to each request in a way

that minimizes the overall execution time. The requests from

the stream C can arrive at any time during the execution

(before being compiled, the methods are interpreted). Scheifler’s

inlining problem [74] is a special case in which the set of

requests C is the set of all methods Π, and in which the

compilations run before the program starts.

Notably, an online inlining algorithm makes decisions in

each individual method separately. Also, unlike a link-time

algorithm, an online inlining algorithm does not have access

to the complete call graph, it does not know which methods

will be compiled in the future, nor which are the best inlining

opportunities in future compilation requests.

Practical difficulties. Online inlining has several additional

challenges. Our previous definition assumes that the method

size and execution time can be accurately predicted, and that

the future compilation requests are independent of the earlier

decisions. Another indirect assumption was that more inlining

always results in more runtime savings. These assumptions are

not true in practice, as we argue next.

(1) Noisy estimates: An inlining algorithm reasons about the

reduction in a program’s execution time and the increase of

the generated code. The runtime profiling information, such as

the branch execution probabilities or loop backedge counters

[13, 5], is used to estimate savings, but these hints are neither

precise nor an accurate predictor of future behavior, due to

type profile pollution [73], or phase shifts [37].

(2) Compilation impact: If a callsite Cj to a method M is

inlined, runtimes such as the JVM stop measuring the hotness

of M at the callsite Cj . This can prevent the compilation of

M . Second, inlining decisions correlate with the compilation

latency, which impacts the arrival of other requests. A delayed

request will have more profiling information, making other

profile-guided optimizations behave differently.

(3) Non-linearity: Excessive inlining can put more pressure on

limited hardware resources, such as the instruction cache [44],

and degrade performance. Importantly, later optimizations with

a limited budget are less effective if inlining produces a huge

1 def main(args: Array[String]) {

2 async { log(getStackTrace) }

3 log(args)

4 }

5 def log[T](xs: Array[T]) {

6 xs.foreach(println)

7 }

8 trait IndexedSeqOptimized[T] {

9 def get(i: Int): T

10 def length: Int

11 def foreach(f: T => Unit) {

12 var i = 0

13 while (i < this.length)

14 { f.apply(this.get(i)); i += 1 }

15 }

16 }

Fig. 1: An Example Scala Program

Listing 1: Incremental Inlining Algorithm

input : root compilation method µ
output : method µ with inlined callsites

1 root = createRoot(µ);
2 while ¬ detectTermination(root) do
3 expand(root);
4 analyze(root);
5 inline(root);
6 end

method [40, 22, 88]. The intuition that more inlining produces

faster programs is thus correct only up to a certain limit, as

we show in Section V.

III. ALGORITHM DESCRIPTION

In this section, we give a conceptual, high-level overview

of the algorithm. We summarize the heuristics that guide the

algorithm in Section IV. The proposed online inlining algorithm

takes advantage of three crucial observations. First, there is

a discrepancy between the subroutines, which are the logical

units, and groups of subroutines that call each other, which

are the optimizable units. Therefore, the new algorithm uses a

heuristic (shown later, in Listing 6) to identify such groups of

subroutines, and either inline them together, or not at all.

Second, most inliners use a fixed threshold to decide when

to stop inlining. However, this is detrimental if there are a few

hot calls to small methods when the method runs out of budget.

Consider, for example, the Scala program shown in Figure

1 – inlining the foreach call into the log method is only

beneficial if the get and length calls inside the corresponding

loop are also inlined. Thus, the proposed algorithm uses

adaptive thresholds to allow the inlining of hot methods even

if it is low on budget, as shown later in Section IV.

Finally, inlining decisions can be improved by propagating

constants and type information throughout the call tree, and

by speculatively triggering the optimizations before inlining

the callees. Therefore, the proposed inliner alternates between

call tree exploration, call tree simplification and inlining. We

start by giving a high-level overview of this process.

High-level overview. A compilation starts an independent

instance of our algorithm, whose high-level pseudocode is

shown in Listing 1. The request consists of the intermediate

representation of a method µ, called the root compilation
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Fig. 2: Call Tree During an Inlining Round

Listing 2: Call Tree Node

1 Struct Node is
2 kind: one of { E, C, G, D };
3 ir: corresponding method body;
4 callsite: pointer to the callsite in the parent;
5 children: list of pointers to the children;
6 end

method. The algorithm creates the root call tree node for µ,

which contains its intermediate representation and the list of

child nodes. Each child corresponds to a callsite in µ. At this

point, a child does not yet contain its respective body.

The expand step then partially expands the call tree. After

that, the analyze step decides which parts of the call tree

should be inlined. Finally, the inline step inlines those parts

into the root method µ. These three phases, expansion, analysis

and inlining, repeat until the algorithm terminates. In the

following sections, we explain these phases in detail.

Example. Consider the Scala method main in Figure 1,

which starts an asynchronous execution thread with async,

and then calls log to output the command-line arguments.

The log method uses the foreach method defined on the

type IndexedSeqOptimized from the Scala standard library

to print the array elements. The foreach is very general –

it traverses the elements of any sequence collection with a

while-loop and calls the specified function on each of the

elements. The foreach method calls the length method, the

get method to obtain the elements, and the apply to invoke

the function f – all these calls are polymorphic.

The call tree in Figure 2 initially has the root node main.

The tag E means that the node was expanded. Callsites async,

$anon and log are the child nodes with the annotation C,

which indicates that they are not yet expanded. The $anon

node is a constructor for the lambda object passed to the async

call. The algorithm then expands the nodes $anon and log,

producing the call tree on the right. Since the implementation

of the async method is not known in this example, the inliner

assigns the annotation G to that call node. Finally, the algorithm

analyzes the call tree and decides to inline the $anon callsite,

as shown on the bottom. Unlike some alternative inlining

algorithms [6, 5, 8, 82], our algorithm does not yet decide

to inline foreach – the benefit of inlining foreach only

becomes apparent once the call tree is explored more.

A. Call Tree Data Structure

Each call tree node represents a callsite to a method Mi in

its parent, and its children represent the callsites Cj within the

body of the method Mi, as illustrated in Figure 2. The call

tree is partial, meaning that it consists of the method µ and a

connected subset of the nodes reachable from µ.

Call tree nodes. The node data type is shown in Listing

2. Each node has a kind tag, which can be E, indicating an

expanded node, or C, indicating a non-expanded cutoff node.

In addition, a node can be tagged with D, indicating that there

was a callsite, but it was deleted by an optimization. Finally, G
indicates that a particular callsite cannot be inlined. Each node

except the root holds a pointer to the respective callsite in the

parent’s body, and an expanded node holds the intermediate

representation ir of the respective method.

Rationale. Many inlining algorithms use a complete call

graph to represent the call hierarchy [4, 5, 6, 12, 13, 17, 35,

85, 92], which consists of all the methods in the program, and

directed edges representing the callsites in those methods. Our

algorithm uses a partial call tree for three reasons:

(1) Dynamic classloading: Dynamic runtimes such as the JVM

can load code during the execution [41], so it is not possible

to statically construct the complete call graph, as code might

have never been executed and thus not eagerly loaded.

(2) JIT compilation constraints: A dynamic compiler has a

limited time budget, since it runs concurrently with the user

code. Creating the complete call graph is expensive [27, 23].

(3) Callsite specialization: A callsite within the root method

µ can be specialized with the callsite arguments in µ’s

body. Moreover, argument type information can be propagated

through the call tree, allowing the specialization of each callsite.

This is harder with a complete call graph, where each node

represents the target of many callsites. Callsite specialization

enables more accurate predictions about the costs and the

benefits, as we show in Section V.

B. Expansion Phase

During the expansion, our algorithm heuristically chooses

a cutoff node, and attempts to expand it. If a cutoff can be

expanded, then the IR of the corresponding method is attached.

For each callsite in the IR of the newly expanded node, a child

cutoff node gets added. This is repeated until heuristically

deciding that the tree is sufficiently expanded.

Description. The expand procedure in Listing 3 initializes

a mapping queue between each node and the set of its children

that should be considered for expansion. The expand then re-

peatedly descends into the call tree, until the expansionDone

heuristic interrupts it. The descend procedure selects a path

from the root to a cutoff node. To choose a subtree, descend

heuristically picks the best child on the node’s queue, and

ensures that a child c is kept on the queue of its parent n only

if c’s queue is non-empty or c is a cutoff node.

Once descend finds a cutoff, it invokes the expandCutoff

heuristic, which either expands the cutoff, or returns null to

indicate that the cutoff should be left as-is.

166



Listing 3: Expansion Phase

input : call tree root
output : expanded call tree

1 Procedure expand(root) is
2 for n ∈ root do queue(n) = n.children;
3 while ¬ expansionDone(root) do descend(root);
4 end
5 Procedure descend(n) is
6 if n.kind ∈ { E } then
7 best = highestPriorityNode(queue(n));
8 queue(n) = queue(n) \ best;
9 new = descend(best);

10 if new 6= null ∧ |queue(new)| > 0 then
11 queue(n) = queue(n) ∪ new;
12 end
13 return n;
14 else if n.kind ∈ { C } then return expandCutoff (n);
15 end

Example. Consider the main method from Figure 1. At the

start of the second expansion phase, the queues of the expanded

nodes contain the only child, as shown below in the first call

tree. The descend procedure picks the path to the foreach

call, which is the only cutoff node.

mainE

logEasyncG

mainE

logE

foreachE

asyncG

foreachC

lengthC getC applyC

3

1

2 3

4

4

5

1

2 3

4

6

3

4

7,6,5

7

mainE

logE

foreachE

asyncG

lengthC getC applyE
5

1

2 3

4

6

3

4

6,7,5

7

printlnC
8

8

In the second call tree, the queue of the newly expanded

foreach node contains nodes 7, 6 and 5, corresponding to

calls to apply, get and length, respectively. The policy

gives a higher priority to the node 7 (for example, because that

apply call appears in a loop), so it appears earlier. However,

after the cutoff node 7 gets expanded, the policy decides that

the priority of the node 7 should decrease, and now node 6
appears earlier, as shown in the third call tree.

C. Cost-Benefit Analysis Phase

Listing 4: Cost-Benefit Analysis Phase

input : call tree without cost-benefit decisions
output : call tree with cost-benefit decisions

1 Procedure analyze(node) is
2 foreach c ∈ node.children do analyze(c);
3 analyzeNode(node);
4 end

The cost-benefit analysis determines the cost and the benefit

of each node in the partial call tree, as well as the relationships

between the methods that should be inlined together. For

example, the analysis may decide that if a particular callee M
is inlined, then its children must also be inlined.

Description. The cost-benefit analysis is a bottom-up traver-

sal of the call tree. The policy-based analyzeNode procedure

inspects the node’s intermediate representation and its children

to estimate its benefit and its cost. This procedure may

mainE

logE

foreachE

asyncG

lengthE getE applyE

printlnE

printfG

1st cluster

2nd cluster

1

2 3

4

5 6 7

8

9

mainE

asyncG printlnE

printfG

1

2 8

9

mainE

asyncG printfG

1

2 9

Fig. 3: Analysis and the Inlining Phase Example

recursively replace the parameters in the method body with

the callsite arguments, and trigger optimizations.

Example. Our implementation assigns cost-benefit tuples

to nodes, but it also detects the clusters of nodes that should

be inlined either together, or not at all. Consider the last call

tree in the example from Section III-B. After the analysis, the

nodes 3, 4, 5, 6 and 7 form one cluster (for example, because

they simplify the loop in foreach when compiled together),

as indicated with the dashed line in Figure 3. This means that

they can either be inlined together or not at all. Separately, the

node 8 comprises a second callsite cluster. The root node of

each callsite is assigned a cost-benefit tuple that models the

benefit (i.e. the estimated reduction in the program runtime)

and the cost (i.e. the estimated code size increase) of inlining

the entire respective cluster. To avoid cluttering Figure 3, we

omit concrete cost-benefit tuple assignments.

D. Inlining Phase

Listing 5: Inlining Phase

input : root of the analyzed call tree
output : root with inlined callsites

1 Procedure inline(root) is
2 queue = ∅;
3 foreach c ∈ root.children do queue = queue ∪ c;
4 while ¬ isEmpty(queue) do
5 n = bestCluster(queue);
6 queue = queue \ n;
7 if canInline(root, n) then inlineCluster(n, queue);
8 end
9 end

10 Procedure inlineCluster(n, queue) is
11 inlineIR(n.callsite, n.ir);
12 foreach c ∈ n.children do
13 root.children = root.children ∪ c;
14 if inCluster(n, c) then inlineCluster(c, queue);
15 else queue = queue ∪ c;
16 end
17 end

Description. The goal of this phase is to inline clusters

of related methods into the root compilation method. The

inline method first creates a queue that initially contains

the root’s children. As long as the queue is not empty, the

bestCluster heuristic selects and removes a node from the queue

that represents a cluster. If the canInline heuristic decides that

the cluster can be inlined, then inlineCluster traverses the

nodes of the cluster, and inlineIR replaces the callsite with

the body of that cluster. The descendants of the cluster are put

on the queue, and the loop repeats.
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Example. Figure 3 shows two clusters, and the call trees

after two calls to the inlineCluster method. Generally, the

inlining can end earlier if the canInline heuristic decides

that it ran out of budget. In this particular case, the inlining

ends once the queue becomes empty.

IV. IMPLEMENTATION

Having shown the high-level structure of our inlining

algorithm in Section III, we focus on the details of our

implementation, which was done in the enterprise edition of the

Graal JIT compiler. We explain several additional optimizations,

and the implementations of heuristics that were shown with

slanted typeface in Listings 1, 3, 4 and 5.

The motivations behind our heuristics are as follows. (1) We

want to inline parts of the call tree with a high benefit, but spend

as little budget as possible. (2) However, we avoid exploring

one part of the call tree too much at the expense of other parts,

even if it seems extremely beneficial – infrequently invoked

methods can reveal type information that allows simplifying

the hot methods. (3) When inlining a method M , we also want

to inline other methods that M would inline if it were the

compilation root. This prevents wasting the optimizations that

would otherwise be triggered.

We first introduce the metrics tracked by our algorithm. First,

we note that Graal can access the JVM profiling data [46, 38],

such as branch probabilities, back-edge counters and receiver

profiles. This allows computing, for each call node n, the call

frequency f(n) relative to the root method.

Next, for each call subtree of a node n, we maintain the

sum Sir(n) of all the call node IR sizes in that subtree.

Sir(n) =
∑

m∈subtree(n)

|ir(m)| (1)

For each call subtree below a call node n, we track the total

size Sb(n) of all the IRs in all its cutoff nodes.

Sb(n) =
∑

m∈subtree(n),kind(m)=C

|ir(m)| (2)

Similarly, we track the cutoff count Nc(n) in every subtree:

Nc(n) = |m ∈ subtree(n) : kind(m) = C| (3)

For a particular callsite n with a frequency f(n) relative to

the root, let Ns(n) be the number of arguments whose type

is more concrete than the formal parameters, and No(n) be

the number of simple optimizations triggered in the callee as

a result of deep inlining trials. To estimate the local benefit

BL(n) of inlining the callee n, we use the following formula.

BL(n) =

{

f(n) · (1 +Ns(n)) kind(n) = C

f(n) · (1 +No(n)) kind(n) = E
(4)

Note that, in our implementation, we calculate No(n) only

for the simplest optimizations, such as constant folding, strength

reduction or branch pruning, and give them all equal weight.

Refining this could yield more precise inlining decisions, but

we did not investigate this in the current work.

Expansion. Recall the highestPriorityNode heuristic from the

Listing 3. Its goal is to predict the nodes whose inlining reduces

the execution time most, and which are at the same time likely

to be inlined. We therefore assign priorities, and define the

intrinsic priority PI(n) for a node n as:

PI(n) =







BL(n)
|ir(n)| kind(n) = C

max
c∈{n}∪children(n)

PI(c) kind(n) = E
(5)

For a cutoff node, the intrinsic priority is a ratio between the

benefit and the code size increase if it gets inlined. For an

expanded node, priority P (n) is the maximum of the intrinsic

priorities of its children. The final priority P (n) of a call node

is the intrinsic priority PI(n) decreased by the penalty ψ(n):
P (n) = PI(n)− ψ(n) (6)

We use ψ(n) to reduce the priority of the heavily explored

subtrees. This prevents endlessly exploring a particular subtree

that has some path in the call hierarchy with a high priority

(e.g. a recursive method with a loop), while exploring another

part of the call tree could be more beneficial (e.g. because it

deletes the recursive call).

ψ(n) = p1 ·Sir(n)+p2 ·Sb(n)−b1 ·max(0, b2−N
2
c (n)) (7)

The penalty ψ correlates with Sir and Sb, but is decreased if

the subtree has only a few cutoffs left. The reasoning is that,

even if the subtree is huge, it is likely that exploring those

few cutoffs would turn the entire subtree into a single cluster.

We experimentally tuned Graal to use the values p1 = 10−3,

p2 = 10−4, b1 = 0.5, and b2 = 10, as they generated the best

results for our benchmarks in Section V. We believe that these

parameters depend on the compiler implementation.

The expandCutoff heuristic decides whether to explore a

cutoff node using the following formula:
BL(n)

|ir(n)|
≥ e(Sir(root)−r1)/r2 (8)

The intuition is that the relative benefit threshold rises steadily

as there are more and more nodes in the root method. The

exponential function grows fast with call tree size, but it is

smooth – if there are a few very beneficial calls after the typical

tree size is exceeded, then it is still sensible to explore them.

We experimentally determined that the values r1 ≈ 3000 and

r2 ≈ 500 work well in our implementation.

Analysis. Our algorithm tracks the cost-benefit tuple b|c of

each node. One of the tuple operations is merging ⊕:

b1|c1 ⊕ b2|c2 ≡ b1 + b2|c1 + c2 (9)

The second tuple operation is comparison ≥©:

b1|c1 ≥©b2|c2 ⇔
b1
c1

≥
b2
c2

(10)

Finally, we define the cost to benefit ratio 〈.〉 as follows:

〈b|c〉 ≡ b/c (11)

Our algorithm also tracks a mapping inlined from each node

n to a boolean indicating if n is in the same cluster as its parent,

and another mapping front that contains the descendants of

the node that are not in the same cluster.

We implemented the analyzeNode heuristic as shown in

Listing 6. First, the inlined state of the node n is set to

false. The node’s tuple is initialized so that the cost is the

IR size of n, and the benefit is the local benefit of n reduced by

the local benefits of n’s children. The reasoning is that inlining

n on its own forfeits the benefits of inlining its children, which

would otherwise be realized if n was the compilation root.
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Listing 6: Cost-Benefit Analysis Phase

1 Procedure analyzeNode(n) is
2 inlined(n) = false;

3 tuple(n) = BL(n)−
∑

m∈children(n)

BL(m)

∣

∣

∣

∣

|ir(n)|;

4 front(n) = n.children;
5 while front(n) 6= ∅ do
6 m = argmax

d∈front(n)

tuple(d);

7 if tuple(n) ⊕ tuple(m) ≥© tuple(n) then
8 tuple(n) = tuple(n) ⊕ tuple(m);
9 front(n) = front(n) \ m ∪ front(m);

10 inlined(m) = true
11 end
12 else break;
13 end
14 end

The heuristic then sets the front of the node n to the set

of its child clusters (note: at this point, the children of n are

already assigned to clusters), to model the fact that n is initially

alone in its cluster. As long as n’s front is not empty, the

node with the largest (by ≥©) tuple is selected. That tuple

corresponds to the adjacent cluster with the largest benefit

to cost ratio. The heuristic then checks whether inlining this

adjacent cluster would increase the benefit to cost ratio of the

current cluster. If yes, the clusters are merged by updating the

tuple, front and inlined relations, and the loop repeats.

If not, then there are no more clusters that could improve the

current one, so the analysis of the node ends.

As an example, consider the cluster below the log method

in Figure 3. If there is insufficient budget to inline the entire

cluster, then log is compiled separately, in which case the

length and the get methods remain direct calls on arrays,

and only apply becomes polymorphic. This is much better

than inlining the log method without the foreach due to

insufficient budget, which leads to the foreach method getting

compiled separately, making all of its callsites polymorphic.

Inlining. The bestCluster heuristic from Listing 5 uses the

tuple value of a node n to select the cluster with the highest

benefit to cost ratio. Once selected, the canInline heuristic uses

the following threshold to decide whether to inline:

〈tuple(n)〉 ≥ t1 · 2
(|ir(root)|+|ir(n)|)/(16·t2) (12)

When the inlining starts and the root is small, the benefit

to cost ratio may be small to justify inlining. However, as

the inlining progresses, and the root method becomes larger,

a callsite’s benefit must increasingly outweigh the method

size. Importantly, the threshold is sensitive to the size of the

method due to the |ir(n)| term in the exponent, so it is "more

forgiving" towards small methods when it gets close to the

threshold. We therefore call this threshold function adaptive.

We experimentally determined that the values t1 = 0.005 and

t2 = 120 work well in our implementation.

For example, consider the println call from Figure 3. If

the inliner is close to running out of budget, it might not make

sense to inline a huge cluster, such as the subtree below log.

However, exceeding the threshold only slightly to inline the

println call, which is a bridge method for printf, does

make sense because println is a small method, and its main

overhead is in the extra function call to the printf method.

Termination detection. We stop when there are no cutoff

nodes left, i.e. Nc(root) = 0, or if there were no changes in

the call tree during the last round. As a fallback, we also stop

if the IR size of the root method exceeds 50000, since Graal’s

compilations become too slow thereafter.

Deep inlining trials. By specializing the call nodes with

their callsites’ arguments, our algorithm effectively simulates

the optimizations that would later occur if the corresponding

methods were inlined. The optimization count is used in the

local benefit calculation in Equation 4. Furthermore, these

optimizations simplify the call tree, thereby increasing the

benefits and decreasing the costs of the call nodes. Such

simplified call nodes are more likely to get inlined.

After inlining, we find all the callsites in the root method

whose arguments were altered. For each such callsite, we copy

the callsite arguments into the IR of the corresponding call node.

We then propagate the improved type information through the

IR, and trigger a Graal transformation called canonicalization.

This phase includes a set of optimizations, such as constant

folding [87], strength reduction [16], branch pruning, global

value numbering [15], and JVM-specific simplifications such

as type-check folding for values of known type. This process

is repeated recursively in the call tree.

As an example, consider the method foreach from Figure

3. When main is the compilation root, propagating the callsite

arguments allows devirtualizing and expanding the length,

get and apply calls in the foreach. Without doing so, these

calls remain polymorphic, which prevents further expansion,

as well as concluding that foreach is beneficial.

Other optimizations. Additionally, we apply read-write elim-

ination in the root method at the end of every round [81]. We

found that this helps in some programs by partially restoring

the method receiver type information that is lost when writing

values to memory (and later reading the same values). At the

end of every round, we also apply peeling on a loop’s first

iteration if we detect that the loop contains a φ-node (i.e. a

variable) whose type is more specific in that first iteration.

Polymorphic inlining. To inline polymorphic calls, we use the

approach by Hölzle and Ungar [34]. We use a new call node

kind P to model a polymorphic callsite. Each child node of a

polymorphic callsite corresponds to a concrete target, where

the targets are speculated based on the VM’s receiver type

profile. When a polymorphic call node gets inlined, we emit a

typeswitch (i.e. an if-cascade with type checks).

We experimentally found that a maximum of 3 targets, where

each target must have at least a 10% probability, is usually a

good trade-off against the typeswitch overhead. If some types

target the same method (e.g. due to subclassing), we check

against the method’s address, as described by Detlefs and

Agesen [19]. Depending on the profile, the typeswitch ends

with a virtual call, or a deoptimization.
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Fig. 4: DaCapo: Fixed (red ◦) vs Adaptive (blue ×) Threshold (bars – memory, curves – running time, x-axis – Te;Ti)

We use the following expression for benefit estimation:

BL(n) =
∑

m∈children(n)

pm ·BL(m) (13)

Above, the value pm is the profile-based probability that the

virtual call dispatches to the respective child node m.

Recursive methods. To prevent recursive calls from monop-

olizing the call graph exploration, we decrease the intrinsic

exploration priority PI(n) of a cutoff node n by a penalty

ψr(n), where, d(n) is the (possibly indirect) recursion depth.

ψr(n) = max(1, f(n)) ·max(0, 2d(n) − 2) (14)

The frequency f(n) is used to compensate the impact of the

frequency multiplier in the local benefit estimation in Equation

4. This heuristic creates an increasing pressure against recursive

methods. Until the recursion depth 2, the value of ψr is 0, but

it increases exponentially thereafter.

Parameter tuning. All the parameters used in our implemen-

tation were tuned by doing an exhaustive search over ranges of

values that we defined manually based on our intuition. In the

tuning process, we selected the parameter configuration that

resulted in the best peak performance across all benchmarks,

but at the same time did not cause more than a 5% slowdown

on any benchmark with respect to the existing inliners in Graal.

Furthermore, another constraint was not to increase the warmup

time by more than 20%. We did not optimize for the code size

during the tuning, but our subsequent inspection revealed that

the code size increase is not dramatic.

V. EVALUATION

The goal of this evaluation is twofold. (1) We show that

the adaptive inlining threshold in the expression in Equation

12 outperforms fixed thresholds, that clustering in Listing 6

outperforms method-by-method inlining, and that deep inlining

trials from Section IV outperform normal inlining trials. To do

this, we compare the tuned version of our algorithm against a

range of possible parameters, (2) We show that our algorithm

significantly outperforms existing inlining algorithms when

applied to our compiler, as well as other JIT compilers for the

JVM such as the default C2 compiler [46].
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Fig. 5: Warmup Curves: C2 (red ◦) vs Graal (blue ×)

We conducted the experiments on an Intel i7-4930MX quad-

core CPU with hyperthreading. We followed established prac-

tices for benchmarking on the JVM [26]. For each datapoint, we

executed the measurements in 5 separate JVM instances, and

we report both the mean and standard deviation. In each JVM

instance, we measured peak performance – we repeated each

benchmark a predefined number of times, and we computed the

average of the last 40% (but at most 20) repetitions. Importantly,

repetitions are chosen for each benchmark separately so that

we always measure the steady state. The warmup curves for

different alternatives reach stability after a similar time (i.e.

after a similar number of repeated iterations of the benchmark)

indicating that we tuned the inlining algorithm so that it does

not incur a significant compilation overhead – we show only

the most prominent examples in Figure 5.

To eliminate the effects of dynamic frequency scaling, we

disabled the intel_pstate driver, and we set the frequency

of all CPU cores to 3 GHz. We monitored the CPU frequency

during benchmarking, and ensured that it stays at 3 GHz.

In the plots, we show both the running time, shown with

curves, and the amount of code installed by the JIT compiler,

superimposed with bars. We include the standard deviation for

time, but not for code size, whose variance was very low.

We used 10 DaCapo benchmarks that run on JDK 8 [9];

all 12 Scala DaCapo benchmarks [78]; 3 benchmarks from

the Spark-Perf suite: the Gaussian mixture model, the decision

tree and the multinomial naive Bayes algorithm for Apache

Spark MLlib [64]; a set of Neo4J graph processing queries;

a new Scala compiler implementation called Dotty; and the

STMBench7 benchmark [28] applied to ScalaSTM [10].
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Fig. 6: Scala DaCapo: Fixed (red ◦) vs Adaptive (blue ×) Threshold (bars – memory, curves – running time, x-axis – Te;Ti)
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Fig. 7: Other: Fixed (red ◦) vs Adaptive (blue ×) Threshold (bars – memory, curves – running time, x-axis – Te;Ti)

We stress that, for us, running time is more important

than code size. As argued before [80, 64], and as showed

here, Graal’s optimizations are already very good. A 10%
performance increase is regarded as a significant improvement,

while a code size increase of up to 100% is typically tolerable

(for example, GCC inliners report 44% binary size growth

[35], and ≈ 100% increase is acceptable in some WCET-aware

optimizations [42]). We therefore adjust the y-axis range to

clearly show the area around the optimal values.

Adaptive inlining threshold. To show that the adaptive

expansion threshold from Equation 8 and the inlining threshold

from Equation 12 outperform fixed thresholds [6, 5, 35], we

implement an alternative policy that compares the call tree size

to a fixed value Te to decide whether to continue expansion,

and the root node count to Ti to decide to continue inlining.

We test Te ∈ {500, 1k, 3k, 5k, 7k}, and Ti ∈ {1k, 3k, 6k} (we

found that benchmarks are most efficient in this range), and

compare them against the tuned version of our algorithm. All

other aspects of the algorithm are left as-is.

Figures 4, 6 and 7 show that the fixed threshold can achieve

the performance of the adaptive threshold heuristic, but the

optimal parameters have to be tuned differently for every

benchmark. For example, avrora and scalatest achieve

the best performance for Te = 500, but sunflow is 20%
slower in that range compared to its optimal value Te = 1000.

On many benchmarks, such as fop, luindex, pmd, sunflow,

kiama, scalac, scalariform, naive-bayes, dotty and

stmbench7, the value Te = 1000 seems like a good choice,

but this value is ≈ 20% slower for jython, ≈ 5% slower for

h2, ≈ 11% slower for factorie, ≈ 7% slower for scaladoc,

≈ 51% slower for gauss-mix. On the other hand, Ti = 6000
works well for jython, factorie and gauss-mix, but this

value is an extremely bad choice for most other benchmarks.

Out of 28 benchmarks, the fixed threshold outperformed

the adaptive threshold by more than 10% only in scalatest,

and by about 5% in jython and dec-tree. However, the

optimal parameters for scalatest are Te = 500, Ti = 1000,

for jython Te = 5k, Ti = 6k, and for dec-tree Te = 1k.

The adaptive heuristic always outperformed the fixed one on

luindex, actors, factorie, scaladoc, and gauss-mix.

On factorie, tmt and gauss-mix, the optimal variant of

fixed heuristic installed 2× more code than adaptive, while the

adaptive heuristic installed 2× more code only on sunflow.

Clustering. To compare our clustering heuristic against the

classic approach where each method’s benefit must exceed some

threshold [6, 5, 92, 4], we implement a new analysis policy

that assigns each method into a separate cluster. We compare

the two heuristics, while leaving the rest of the algorithm as-is.

For space reasons, we show some of the graphs in Figure 8,

and we keep the rest in the appendix.

The 1-by-1 heuristic is quite sensitive to the parameters from

Equation 12. In many benchmarks, t1 = 0.0001 and t2 = 1440
is the best choice (sunflow, xalan, and factorie, to name

a few). However, this combination is slower by ≈ 12% for

pmd, by ≈ 4% for apparat, by ≈ 8% for scalatest, by

≈ 24% for scalaxb and by ≈ 8% for neo4j. By contrast,

clustering is relatively insensitive to the choice of parameters,

and either matches or outperforms the best 1-by-1 variant.
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Fig. 8: 1-By-1 (red ◦) vs Clustering (blue ×) Decisions (bars – memory, curves – running time, x-axis – t2;t1)
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This time, clustering outperforms the 1-by-1 heuristic for

all parameter combinations on fop, factorie, scaladoc,

scalariform and dotty. The only benchmark on which

1-by-1 consistently outperforms clustering is pmd.

Deep inlining trials. To show the benefits of specializing the

call tree by forwarding the callsite arguments and triggering

the optimizations, we compare them against the approach of

specializing the callsites only in the root compilation method

[7, 18]. The results are shown in Figure 9, where the proposed

inliner with deep trials is compared against the same inliner

implementation in Graal that does not do deep trials (blue and

the green bars).

Overall, deep inlining trials have very small impact on

DaCapo benchmarks. However, on Scala DaCapo, the im-

provement is ≈ 8% on actors, ≈ 13% on factorie,

≈ 7% on scalac, and ≈ 6% on scalatest. As for the

other benchmarks, dotty is improved by ≈ 2.5%, neo4j

by ≈ 6.5%, and gauss-mix is most affected with a ≈ 59%
improvement.

Comparison against alternatives. To show the benefits of

the proposed inliner, we compared our implementation against

the inliner implementation that is available in the open-source

Graal, which is available on GitHub [3]. This inliner is akin to

the inlining algorithm for JIT compilers described by Steiner

et al. [82], which does not have an exploration phase. We

stress that we used the Enterprise Graal for the comparison –

the only component that we replaced was the inliner. We also

compared against the standard HotSpot C2 compiler, which

inlines a single-method at a time (first only trivial methods

during bytecode parsing, and larger methods in a separate, later

phase), with a greedy heuristic that is similar to the one used

in basic Graal. The results are shown in Figure 9.

On all benchmarks except pmd, our algorithm outperforms

Graal’s open-source inliner, in some cases by several times.

With respected to C2 and DaCapo, we observed improvements

of ≈ 21% on jython, ≈ 13% on luindex, ≈ 5.5% on pmd,

and ≈ 9% on sunflow. C2 outperforms Graal on lusearch

and xalan. We note that C2 was heavily optimized for DaCapo.

On Scala DaCapo, our inliner improves over C2 by ≈ 1.7×
on apparat, ≈ 2.9× on factorie, ≈ 1.45× on kiama,

≈ 1.45× on scaladoc, ≈ 1.5× on tmt, ≈ 1.8× on

naive-bayes, and ≈ 1.9× on gauss-mix. C2 outperforms

our inliner by around 10% on scalatest and by 4% on

neo4j.
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Fig. 10: Code size comparison between compilers (Graal CE •, Graal EE �, C2 △, C1 ⋄)

TABLE I: SIZE OF THE GENERATED CODE (MB)

Benchmark Graal, new Graal, greedy HotSpot C2

avrora 2.39 1.17 1.28

batik 8.35 3.60 4.89

fop 6.93 3.81 4.70

h2 17.00 3.46 4.95

jython 24.34 14.86 11.30

luindex 2.81 1.41 1.59

lusearch 1.96 1.06 1.43

pmd 14.39 5.71 6.72

sunflow 1.91 1.18 0.96

xalan 5.78 2.49 3.71

actors 6.57 2.01 2.41

apparat 8.46 3.13 4.07

factorie 3.32 1.36 1.17

kiama 4.61 2.29 3.14

scalac 28.40 15.43 25.21

scaladoc 16.16 9.16 13.34

scalap 4.32 1.61 1.82

scalariform 8.09 3.31 4.73

scalatest 12.31 6.06 12.42

scalaxb 8.61 2.99 4.91

specs 8.46 3.20 4.20

tmt 5.22 1.65 2.13

naive-bayes 3.73 2.35 2.72

dec-tree 15.35 6.33 8.51

gauss-mix 8.53 4.12 5.36

dotty 25.56 15.02 22.50

neo4j 28.82 12.60 17.37

stmbench7 6.68 1.95 2.19

Code size comparison. In Figure 10, we compare the size

of the machine code produced by Enterprise Graal with the

proposed inlining algorithm against the code size of HotSpot

C2, HotSpot C1, and open-source Graal. We only include

the DaCapo and Scala DaCapo benchmarks on which we

observed the most prominent differences in Figure 9. In most

cases, Enterprise Graal with the proposed inliner produces

more code than the alternatives. However, this is not always

the case – for example, on luindex, scalac and scaladoc,

Graal and C2 produce approximately the same amount of

machine code, but Graal generates substantially faster code.

Interestingly, on lusearch, where C2 outperformed Graal, the

amount of generated machine code is similar. We also included

the code size for the first-tier C1 compiler when it is used

without any second-tier compiler – since the first-tier compiler

anyway compiles more methods (shown with the transparent

bars in Figure 10), this illustrates that the total code size of the

second-tier compiler is usually not critical, since the second-tier

compiles only methods that are hot. We found that the C1 code

size generally varies a lot (depending on the benchmark), and

is in some cases higher than Graal EE.

In Table I, we show a more algorithm-focused comparison

between total size of the code generated by Graal with our

new inliner, Graal with the greedy inliner, and HotSpot C2.

We found that Graal with the proposed inlining algorithm on

average generates ≈1.88× more code than C2, and on average

≈2.37× more code than Graal with the greedy inliner. We note

that the tuning the inlining parameters of the greedy inliner to

do more inlining did not substantially improve performance,

and in some cases did not even increase the code size. We found

that the increase in the inlining budget does not necessarily

enable more inlining – by applying other optimizations to

simplify the call graph, the proposed inliner was able to make

more callsites direct, which enabled additional inlining.

VI. RELATED WORK

Aside from decreasing the cost of method calls, the main ben-

efit of inlining is, for many compilers, that it enables additional

optimizations. Thus, inlining eliminates abstractions in the pro-

gram with the aim of making it more low-level. This includes

traditional abstractions such as lambdas [24], bulk collection

processing [61, 48, 21, 83, 69, 72], various object-oriented

design patterns [25], functional programming patterns [43, 86],

data structures [55, 56, 57, 52, 71, 62, 59, 60, 49], and

event streams [45, 63], but also async/await [29], futures and

promises [31], message-passing models [70, 58, 30, 51, 53, 50],

dataflow concurrency [68, 75, 67], and coroutines [66, 65].

In this section, we survey the related work on inline-

substitution algorithms, and other compiler optimizations that

are related to the proposed algorithm [54].

Priority-guided inlining. Ayers et al. described an inlining

algorithm that traverses the callsites in the program according

to their priority [6], and a similar algorithm was later studied

by Arnold et al. [5]. A variant of this algorithm was used in

GCC [35], and in the context of C compilers for embedded

systems [4]. In their budget-driven priority-based inlining,

callsite priority is equal to the estimated benefit of inlining the

call, and inlining stops once the total cost of the inlined method

exceeds a fixed threshold. Zhao and Amaral showed that using

benefit divided by cost improves the inlining decisions, and

they used the total application size metric to scale the cost of

small methods [92].

Steiner et al. compared depth-first, breadth-first and priority

inlining in a JIT compiler, and reported minor differences
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between these approaches [82]. Their implementation did not

alternate between exploration and inlining – we found that this

substantially improves performance.

Priority-driven inlining inspired our own algorithm design,

but we found that jointly inlining clusters of callsites instead

of single callsites, and using an adaptive inlining threshold

instead of a fixed threshold, substantially improves priority-

based inlining.

Prediction-driven inlining. Multiple inlining heuristics based

on a fixed set of decision rules were proposed [76, 47, 35].

Cooper et al. showed experimental evidence that program-

specific inlining heuristics outperform one-size-fits-all inlining

heuristics [17]. In particular, some heuristics prefer callsites

whose inlining later leads to better optimizations. The idea

of predicting the optimizations enabled by inlining was first

proposed by Ball [7], and later explored by Dean and Chambers

in the context of Self [18]. In both cases, the inlining benefits

were predicted only one level below the root compilation

method. Waddell and Dybvig showed that alternating inlining

with optimizations such as constant folding produces more

efficient code [85]. Jagannathan and Wright showed that a

dataflow analysis on Scheme programs allows identifying

callsites that are transitively called with more specific types [36].

Similarly, Sewe et al. showed that propagating the argument

type information allows more easily identifying optimizations,

and making better inlining decisions [77]. Our algorithm

both propagates argument types, and recursively executes

optimizations to specialize the call tree. This allows measuring

optimization impact deep inside the call tree in a context-

sensitive way.

The inliner in the LLVM infrastructure [39] traverses the

strongly connected components of the call-graph bottom-

up, inlining methods one-by-one [2]. This inliner uses two

fixed inlining thresholds depending on whether the method is

regarded as hot [91, 90]. Benefit is estimated using a one-level

inlining trial [7, 18, 1].

Profile-driven inlining. Profile-based inlining was studied by

Scheifler in the context of CLU [74]. Chang et al. showed

that the execution profiles can improve inlining in C programs

[12, 13], and McFarling described a technique that minimizes

the instruction cache miss rate [44]. Our inlining algorithm

relies on branch profiles to calculate the callsite frequencies,

and it additionally uses type profile information to speculative

inline callsites that are polymorphic.

Other techniques. In the context of trace-based JIT compilers,

Haeubl et al. studied trace inlining for Java [32], can result

in good performance. Our implementation does not target a

trace-based JIT compiler, and we did not yet investigate trace-

based inlining in detail. Hazelwood and Grove found that

guiding the inlining decisions with context-sensitive profiles

improves performance [33]. We believe that context-sensitive

profiles could improve our algorithm further, but we did not yet

evaluate this, since the profiles provided by the HotSpot VM are

context-insensitive. Some researchers have also observed the

impedance between methods as logical units of functionality,

and the optimizable regions in the program, which drove the

procedure-boundary-elimination technique for whole-program

optimization [84]. Unlike our work, where we inline a method

once we realize its optimization potential, and then execute

the optimizations, procedure boundary elimination transfers

knowledge between compilation units, and can apply some

optimizations without inlining. Other related techniques, such

as procedure strength reduction and procedure vectorization,

were done in the context of telescoping languages [14].

Simon et al. used machine learning to synthesize inlining

heuristics, and reported performance improvements between

3% and 9% [79]. Cammarota et al. also investigated how to

use machine learning to select between inlining heuristics, in

the context of the GCC compiler [11]. We did not investigate

if machine learning can improve the decision points in our

inlining algorithm, and we leave that to future work.

Polymorphic inlining was studied by Hölzle and Ungar [34],

while Detlefs and Agesen proposed a variant that compares

method addresses instead of receiver types [19].

VII. CONCLUSION

We presented a novel inlining algorithm for JIT compilers

that makes use of three new heuristics – callsite clustering,

adaptive thresholds and deep inlining trials. We experimentally

showed that each of these heuristics improves the inlining

algorithm on the standard benchmarks, without a serious

increase in code size. In fact, in many benchmarks, we showed

that excess inlining can be harmful and heuristics produce

better results with a smaller code size. The evaluation showed

that our new inlining algorithm significantly improves the

existing state-of-the-art, such as the greedy inlining algorithm

by Steiner et al. [82], and the inliner used by the HotSpot’s

C2 compiler. Speedups range from 5% up to 3× on 21 out of

28 benchmarks, and only 4 benchmarks exhibit a slowdown

of 5− 20% compared to the C2 compiler.

Even though this work establishes the importance of alternat-

ing graph exploration with optimizations and inlining, as well

as the benefits of callsite clustering and adaptive thresholds, it

also leaves several open research questions. For example, could

better benefit estimation heuristics, based on more accurate cost

models, further improve the proposed inlining algorithm? Could

a dataflow-driven benefit estimation improve the performance of

the generated code? Also, our algorithm used several carefully

tuned parameters – can such parameters be tuned online using

machine learning? We leave these and other questions to future

work.
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