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Abstract
We introduce SnapQueues - concurrent, lock-free queues
with a linearizable, lock-free global-state transition oper-
ation. This transition operation can atomically switch be-
tween arbitrary SnapQueue states, and is used by enqueue,
dequeue, snapshot and concatenation operations. We show
that implementing these operations efficiently depends on
the persistent data structure at the core of the SnapQueue.

This immutable support data structure is an interchange-
able kernel of the SnapQueue, and drives its performance
characteristics. The design allows reasoning about concur-
rent operation running time in a functional way, absent from
concurrency considerations. We present a support data struc-
ture that enables O(1) queue operations, O(1) snapshot and
O(log n) atomic concurrent concatenation. We show that the
SnapQueue enqueue operation achieves up to 25% higher
performance, while the dequeue operation has performance
identical to standard lock-free concurrent queues.

Categories and Subject Descriptors E.1 [Data Struc-
tures]: Lists, stacks and queues

Keywords queues, lock-free, concatenation, snapshots

1. Introduction
Scalability in a concurrent data structure is achieved by al-
lowing concurrent accesses to execute independently on sep-
arate parts of the data structure. While efficient concurrent
implementations exist for many different data structure types
[15], efficient operations that change their global state are
still largely unexplored. For example, most concurrent hash
tables [7] [13], concurrent skip lists [21], and concurrent
queues [14] [22] do not have an atomic snapshot operation,
size retrieval or a clear operation.
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Concurrent queues are used as buffers between producers
and consumers in streaming platforms, as event queues in
reactive programming frameworks, or mailbox implementa-
tions in actor systems. Traditionally, concurrent queues ex-
pose enqueue and dequeue operations. Augmenting them
with atomic global operations opens several new use cases:

• Persisting actor state: Actor frameworks expose persis-
tence modules to persist and recover actor state [1]. Per-
sisting the state requires blocking the mailbox until the
pending messages are copied. With an efficient snapshot
operation, the mailbox can be persisted in real-time.

• Forking actors: Adding a fork or a choice operator
to the actor model [26] requires copying the contents
of the mailbox. To achieve atomicity, the corresponding
actor is blocked during the copying and cannot access the
mailbox. Efficient snapshots help avoid this problem.

• Dynamic stream fusion: Streaming platforms express
computations as dataflow graphs. Each node in this graph
executes a modular subset of the computation, but also
introduces some buffering overhead [24]. Runtime opti-
mizations eliminate this overhead by fusing subsets of the
graph. Efficient, atomic buffer concatenation and joining
allow optimizations without blocking the computation.

This paper introduces a lock-free queue implementation,
called SnapQueue, which, in addition to enqueue and de-
queue operations, exposes an efficient, atomic, lock-free
transition operation. The transition operation is used to im-
plement snapshots, concatenation, rebalancing and queue
expansion. Although SnapQueue is a concurrent data struc-
ture, it relies on a persistent data structure to encode its state.
We describe the SnapQueue data structure incrementally:

1. We describe lock-free single-shot queues, or segments,
and their enqueue and dequeue operations in Section 2.

2. We show that segments can be atomically frozen, i.e.
transformed into a persistent data structure.

3. We describe SnapQueues and their fundamental atomic
operation called transition in Section 3.

4. We implement SnapQueue enqueue, dequeue, snapshot
and concatenation using the transition operation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

SCALA’15, June 13, 2015, Portland, OR, USA
Copyright 2015 ACM 978-1-4503-3626-0/15/06...$15.00
http://dx.doi.org/10.1145/2774975.2774976

1



EMPTY

array

head last

NON-EMPTY
head last

FULL
head last

Figure 1. Single-Shot Queue Illustration

class Segment[T](
val array = new VolatileArray[T],
@volatile var head: Int = 0,
@volatile var last: Int = 0)

Figure 2. Single-Shot Queue Data Type

5. We show how to tune the running time of SnapQueue
operations using persistent data structures in Section 4.

6. We evaluate SnapQueues against similar concurrent
queue implementations in Section 5, and show that hav-
ing snapshot support adds little or no overhead.

The goal of the paper is not only to propose a novel concur-
rent, lock-free queue with atomic constant time snapshots,
but also to reproach the common belief that persistent data
structures are slow, and consequently irrelevant for high-
performance parallel and concurrent computing. As this pa-
per shows, persistent data structures can simplify the devel-
opment of and reasoning about concurrent data structures.

For the sake of conciseness, code listings slightly diverge
from valid Scala code in several ways. First, atomic READ,
WRITE and CAS operations differ from standard Scala syn-
tax, which relies on the Unsafe class. These operations re-
tain the standard Java volatile semantics, and are used to ac-
cess volatile object fields. Second, volatile arrays are rep-
resented with a non-existent VolatileArray class. Finally,
generically typed methods sometimes accept or return spe-
cial singleton values. This does not type-check in Scala, but
can be worked around at a small syntactic cost. The com-
plete SnapQueue implementation can be found in our online
code repository [2].

2. Single-Shot Lock-Free Queue
We start by examining a simplistic lock-free queue imple-
mentation, called a single-shot lock-free queue. This queue
is bounded – it can contain only up to L elements. Second,
only up to L enqueue and up to L dequeue operations can
be invoked on this queue. Despite these limited capabilities,
single-shot lock-free queue is the basic building block of the
SnapQueue, as we show in Section 3.

Single-shot queue is defined by a single data type called
Segment, shown in Figure 2. Segment contains an array

of queue elements, initially filled with special EMPTY values,
head – the position of the first element in the queue, and
last – the estimated position of the first EMPTY array entry.

@tailrec def enq(p: Int, x: T): Boolean =1
if (p >= 0 && p < array.length) {2
if (CAS(array(p), EMPTY, x)) {3

WRITE(last, p + 1)4
true5

} else enq(findLast(p), x)6
} else false7

@tailrec def findLast(p: Int): Int = {8
val x = READ(array(p))9
if (x == EMPTY) p10
else if (x == FROZEN) array.length11
else if (p + 1 == array.length) p + 112
else findLast(p + 1)13

}14

Figure 3. Single-Shot Queue Enqueue Operation

As we will see in Section 2.2, a single-shot queue can
become frozen, in which case no subsequent enqueue or
dequeue operations can succeed. In this frozen state, array
may contain a special FROZEN value.

2.1 Basic Operations
In this section, we study the basic single-shot queue oper-
ations. The enqueue operation overwrites an EMPTY entry in
the array. At all times, it ensures that the array corresponds
to the string REMOVEDp · Tn · EMPTYm, where T is the el-
ement type, and array length is L = p + n + m. After
inserting an element, enqueue sets the last field to point to
the first EMPTY entry.

We define an auxiliary enq method in Figure 3, which
takes an estimated position p of the first EMPTY entry, and an
element x. The enq first checks that p is within the bounds
of array. It then attempts to atomically CAS an EMPTY entry
with x in line 3. An unsuccessful CAS implies that another
enq call succeeded, so findLast finds the first special en-
try, and enq is retried. A successful CAS means that x is
enqueued, so the value last is increased in line 4. Due to
potential concurrent stale writes, last is an underestimate.

The enq precondition is that p is less than or equal than
the actual first EMPTY entry position. This is trivially ensured
by specifying the last field when calling enq.

Lemma 1. If enq returns true, then its CAS operation
added an element to the queue. Otherwise, the queue is
either full or frozen.

Dequeue atomically increments the head field to point to
the next element in the queue. Unlike last, the head field
always precisely describes the position of the first unread
element. When head becomes larger than array length,
the queue is either empty or frozen. Similarly, when head

points to EMPTY or FROZEN, the queue is considered empty
or frozen, respectively.

The deq method in Figure 4 starts by reading head to a
local variable p, and checks if p is within bounds. If it is
greater than the array length, the queue is empty. If p is
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@tailrec def deq(): T = {15
val p = READ(head)16
if (p >= 0 && p < array.length) {17
val x = READ(array(p))18
if (x == EMPTY || x == FROZEN) NONE19
else if (CAS(head, p, p + 1)) {20
WRITE(array(p), REMOVED)21
x22

} else deq()23
} else NONE // used-up or frozen24

}25

Figure 4. Single-Shot Queue Dequeue Operation

def freeze() {26
freezeHead(); freezeLast(READ(last))27

}28
@tailrec def freezeHead() {29

val p = READ(head)30
if (p >= 0) if (!CAS(head, p, -p - 1))31
freezeHead()32

}33
@tailrec def freezeLast(p: Int) =34

if (p >= 0 && p < array.length)35
if (!CAS(array(p), EMPTY, FROZEN))36

freezeLast(findLast(p))37

Figure 5. Single-Shot Queue Freeze Operation

negative, the queue is frozen (explained in Section 2.2). If
p is within bounds, deq reads the element at p to a local
variable x in line 18. If x is either EMPTY or FROZEN, then
the end of the queue was reached, and deq returns NONE.
Otherwise, deq atomically increments head in line 20, or
retries the operation when CAS fails. If the CAS in line 20
succeeds, the thread that executed it must eventually remove
the element from array in line 21, to avoid memory leaks.

Lemma 2. If deq returns NONE, the queue is either empty
or frozen. If deq returns an element, the CAS operation in
deq previously incremented head by one.

2.2 Freeze Operation
Single-shot queue also exposes the freeze operation, which
prevents subsequent updates from succeeding. The method
freeze first calls freezeHead, which atomically replaces
the head value with a corresponding negative value. This
prevents subsequent deq operations. The freeze method
then calls freezeLast, which enqueues a FROZEN element.
This prevents subsequent enq operations.

After the freeze method completes, the Segment object
becomes immutable – no operation will subsequently change
its state. A stale write may change the last field, but the
logical state is only defined by the array and head.

Lemma 3. After freeze returns, subsequent operations can
only modify the last field and the array entries preceding
the position -head - 1.

class SnapQueue[T] {
abstract class Node
class Frozen(val f: Trans, val root: Node)
extends Node

abstract class NonFrozen extends Node
class Root(
@volatile var left: Side,
@volatile var right: Side)
extends NonFrozen

class Side(
val isFrozen: Boolean,
val segment: Segment[T],
val support: Support[T])

type Trans = NonFrozen => NonFrozen
@volatile var root: Node = _

}

Figure 6. SnapQueue Data Types

Lemma 4. When freeze returns, array either contains no
EMPTY entries, or contains a single FROZEN entry. In both
cases, head is negative.

Note that, due to the findLast call, complexity of the
freeze operation is O(L), where L is the length of the array.

3. SnapQueue
Single-shot queue, or segment, is simple, and consequently
efficient. However, boundedness and the L-operations limit
make it uninteresting for most practical purposes. Our goal is
an unbounded queue with arbitrary atomic operations, which
we name SnapQueue. In this section, we show its data types.

When SnapQueue size is less than L, the elements are
stored as a segment. SnapQueue overcomes segment’s L-
operations limit by reallocating the segment when it be-
comes full. To overcome boundedness, SnapQueue uses a
secondary representation: a segment-support pair. When the
number of elements exceeds L, the segment is replaced by
two segments left and right. Subsequent enqueue oper-
ations use the right segment, and dequeue operations use
the left segment.

If there are more than 2L elements, additional seg-
ments are stored in support data structures, hence the name
segment-support pair. The support data structure is persistent
and kept in the support field. Support data structure must be
such that pushing and removing segments retains the order
in which the segments were pushed, i.e. a sequence.

The SnapQueue[T] class is shown in Figure 6. It has a
volatile field root of the Node type. Node is a supertype
of Segment from Section 2, and of the Root and Frozen

types. Segment and Root have another common supertype
called NonFrozen. The Root comprises two volatile fields
left and right, pointing to immutable segment-support
pairs of type Side. Their isFrozen field denotes whether
Side is frozen (explained in Section 3.1). The support field
stores a persistent data structure of the Support[T] type,
which stores intermediate segments. SnapQueue correctness
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Figure 7. SnapQueue Illustration

does not depend on the choice of this data structure, so we
defer discussion on Support[T] until Section 4. A particular
SnapQueue instance containing a Root is shown in Figure 7.

The Frozen data type contains a reference to either
a Root or a Segment, and denotes that the underlying
SnapQueue is currently in the process of being frozen, or
is already frozen. It also contains a transition function of
type NonFrozen => NonFrozen.

As hinted earlier, SnapQueue uses an atomic transition
operation, which freezes the SnapQueue before replacing its
contents. In the next section, we study how freezing works.

3.1 Freeze Operation
Instead of starting with the basic queue operations as in
Section 2, we first describe the freeze operation, which is a
prerequisite for the transition operation, shown later.

As with the single-shot queue, invoking freeze turns a
concurrent data structure into an immutable data structure.
The goal of freeze is to invalidate subsequent writes on
volatile fields in the SnapQueue. To do this, freeze first
freezes the root, then freezes the two Side references, and
at the end freezes the underlying segments.

The SnapQueue#freeze method in Figure 8 takes the
reference r to the previous SnapQueue root. It also takes the
transition function, which is explained in Section 3.2 – for
now we treat it as extra payload in the Frozen object.

The freeze operation first attempts to replace the ex-
pected root r with a fresh Frozen object. If some other
thread already changed root to a value different than r,
freeze signals failure by returning null. Otherwise, if the
CAS changes root to the Frozen object, completeFreeze is
called to freeze the left and right side, and the segments.

Note that, unlike freeze on the single-shot queue from
Section 2.2, freeze operation in Figure 8 may fail and
return null. In this case, it is up to the caller to retry.

However, if the CAS in line 42 succeeds, the SnapQueue
is eventually frozen, since other operations will never mod-
ify frozen left and right fields, or frozen segments.

Lemma 5. After freeze returns a non-null value, subse-
quent operations may only modify the last fields and the
array entries preceding -head - 1 in the two segments.

@tailrec38
def freeze(r: NonFrozen, f: Trans) = {39
val fr = new Frozen(f, r)40
if (READ(root) != r) null41
else if (CAS(root, r, fr)) {42

completeFreeze(fr.root)43
fr44

} else freeze(r, f)45
}46
def completeFreeze(r: NonFrozen) =47
r match {48
case s: Segment => s.freeze()49
case r: Root =>50
freezeLeft(r)51
freezeRight(r)52
READ(r.left).segment.freeze()53
READ(r.right).segment.freeze()54

}55
@tailrec def freezeLeft(r: Root) {56
val l = READ(r.left)57
if (l.isFrozen) return58
val nl = new Side(59

true, l.segment, l.support)60
if (!CAS(r.left, l, nl)) freezeLeft(r)61

}62

Figure 8. SnapQueue Freeze Operation

Furthermore, if a segment is frozen, then so are the left

and right fields.

Proof. This follows from Lemma 3, and the fact that basic
SnapQueue operations fail if Side is frozen.

Lemma 6. If freeze returns a non-null value fr, then the
value of root atomically changed from r to fr, where r is
the specified root reference.

The complexity of the freeze operation in this Section is
again O(L), where L is the length of the array in Segment

objects. Importantly, complexity does not depend on the size
of the persistent Support data structure.

3.2 Transition Operation
The transition operation is the most important SnapQueue
operation. It atomically exchanges the contents and the
structure of the SnapQueue. It is analogous to the CAS op-
eration, with the difference that transition operates on the
entire data structure, rather than a single memory location.

The transition operation first freezes the SnapQueue.
If freeze fails, then so does transition. However, if freez-
ing succeeds, transition uses a transition function that
maps a frozen SnapQueue into a new SnapQueue.

The SnapQueue#transition method in Figure 9 takes
the expected root value r, and a transition function f. After
freezing, it invokes completeTransition, which computes
the new root with f, and atomically replaces the old root with
the output of f in line 79. The helpTransition method is
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def transition(r: Node, f: Trans):63
NonFrozen = {64
if (r.isFrozen) {65
completeTransition(r)66
null67

} else {68
val fr = freeze(r, f)69
if (fr == null) null70
else {71
completeTransition(fr)72
fr.root73

}74
}75

}76
def completeTransition(fr: Frozen) {77

val nr = fr.f(fr.root)78
while (READ(root) == fr) CAS(root, fr, nr)79

}80
def helpTransition() {81
READ(root) match {82
case fr: Frozen =>83

completeFreeze(fr.root)84
completeTransition(fr)85

case _ => // not frozen -- do nothing86
}87

}88

Figure 9. SnapQueue Transition Operations

similar, but gets called by threads executing their separate
operations, to help complete the transition in a lock-free way.

Lemma 7. If transition returns a non-null value, then
the value of root atomically changed from Node reference r
to Frozen(r, f), and then atomically to f(r), where r is
the specified root and f is the transition function.

Proof. This is a consequence of Lemmas 5 and 6.

Lemma 8. The transition running time is O(L+f(n,L)),
where O(f(n,L)) is the transition function running time
with respect to the support data structure size n, and seg-
ment length L.

Proof. This is a consequence of the O(L) complexity of the
freeze operation, and the fact that the transition function is
invoked at least once.

3.3 Transition Functions
The transition operation takes a referentially transparent
transition function. The transition function is invoked by
the time the Node is already frozen, and effectively a persis-
tent data structure, Therefore, the transition can be reasoned
about functionally, separate from concurrency concerns.

We consider some concrete transition functions in Figure
10. Assume that the SnapQueue represented with a segment
of length L needs to be replaced with a Root, as outlined
at the beginning of Section 3. If the SnapQueue contains

def expand(r: NonFrozen) = r match {89
case s: Segment =>90
val head = s.locateHead91
val last = s.locateLast92
if (last - head < s.array.length / 2) {93

copy(s)94
} else new Root(95
new Side(false, unfreeze(s), create()),96
new Side(false, new Segment, create()))97

}98
def transfer(r: NonFrozen) = r match {99
case r: Root =>100
if (r.right.support.nonEmpty) new Root(101
new Side(false,102
copy(READ(r.left).segment),103
READ(r.right).support),104

new Side(false,105
copy(READ(r.right).segment),106
create()))107

else copy(READ(r.right).segment)108
}109

Figure 10. SnapQueue Transition Functions

less than L/2 elements, the expand transition function cre-
ates another segment – copy in line 94 copies a frozen seg-
ment into a freshly allocated one. If the size is above L/2,
expand creates a Root object – here, create allocates an
empty support data structure, and unfreeze reallocates the
segment. The L/2 approach prevents eagerly alternating be-
tween Root and Segment representations.

The transfer transition function is used when a Root

queue runs out of elements in its left segment and support
structure. It transfers the support structure from the right to
the left side of the SnapQueue. In Section 3.4, we will see
usages of both transfer and expand.

Lemma 9. The running time of both expand and transfer

is O(L), where L is the segment size.

Proof. This is the consequence of calling unfreeze and
copy, which take O(L) time for an L-element segment.

3.4 Basic Operations
In this section, we closely examine enqueue and dequeue.
For efficiency, SnapQueue basic operations in most cases
only modify a segment. Occasionally, a segment is used up
and replaced with a new segment from the support structure.

We define the top-level SnapQueue#enqueue method,
and three internal, dynamically dispatched enqueue meth-
ods on the Root, Frozen and Segment data types. After the
top-level enqueue in Figure 11 reads the root, it calls an
internal enqueue. Since SnapQueue is an unbounded data
structure, it must always be possible to enqueue a new ele-
ment. If an internal enqueue returns false to indicate that
the element was not added, the operation is retried.

The enqueue on the Root type reads the right segment-
support pair, and the segment’s last field. It then calls enq
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// SnapQueue110
@tailrec def enqueue(x: T): Unit =111

if (!READ(root).enqueue(x)) enqueue(x)112
// Root113
@tailrec def enqueue(x: T): Boolean = {114

val r = READ(right)115
val p = READ(r.segment.last)116
if (r.segment.enq(p, x)) true117
else { // full or frozen118

if (r.frozen) false119
else { // full120

val seg = new Segment121
val sup = pushr(r.segment, r.support)122
val nr = new Side(false, seg, sup)123
CAS(right, r, nr)124
enqueue(x)125

}126
}127

}128
// Frozen129
def enqueue(x: T): Boolean = {130

helpTransition()131
false132

}133
// Segment134
def enqueue(x: T): Boolean = {135

val p = READ(last)136
if (enq(p, x)) true137
else {138
if (READ(head) < 0) false // frozen139
else { // full140

transition(this, expand)141
false142

}143
}144

}145

Figure 11. SnapQueue Enqueue Operation

in line 117. If enq returns false, the segment is either full
or frozen, by Lemma 1. In line 119, we rely on Lemmas 4
and 5 to check if the segment is frozen. By Lemma 5, if the
segment is frozen, the Root is also frozen, so we return to the
top-level enqueue in line 119, and then help complete the
transition. Otherwise, if the segment is full, we push its array
into the support structure with a persistent pushr operation,
and replace the right side with the new Side object.

The enqueue on the Frozen type helps the current tran-
sition operation to complete, and then retries the enqueue.
The enqueue on the Segment type calls enq – if the seg-
ment is full, it attempts to replace the segment by calling
the transition operation from Section 3.2 with the expand
function from Section 3.3 before retrying.

The dequeue operation in Figure 12 is similarly sepa-
rated between the top-level SnapQueue#dequeue, and inter-
nal dequeue methods on Root, Segment and Frozen types.
Root#dequeue starts by calling deq on the left segment. If
deq fails, the segment is either empty or frozen, by Lemma
2. If the segment is frozen, there is possibly an ongoing tran-

// SnapQueue146
@tailrec def dequeue(): T = {147

val r = READ(root)148
val x = r.dequeue()149
if (x != REPEAT) x else dequeue()150

}151
// Root152
def dequeue(): T = {153
val l = READ(left)154
val x = l.segment.deq()155
if (x != NONE) x156
else { // empty or frozen157
if (l.frozen) REPEAT158
else { // empty159
if (l.support.nonEmpty) {160

val (seg, sup) = copy(popl(l.support))161
val nl = new Side(false, seg, sup)162
CAS(left, l, nl)163
dequeue()164

} else { // empty side165
transition(this, transfer)166
REPEAT167

}168
}169

}170
}171
// Frozen172
def dequeue(): T = {173
helpTransition()174
REPEAT175

}176
// Segment177
def dequeue(): T = {178
val x = deq()179
if (x != NONE) x180
else if (READ(head) < 0) REPEAT // frozen181
else NONE // empty182

}183

Figure 12. SnapQueue Dequeue Operation

sition, so control returns to the top-level dequeue. Other-
wise, if the support data structure is non-empty, dequeue in-
vokes popl to extract an array for a new segment, refreshes
the left side, and retries. If the support is empty, segments
must be borrowed from the right side, so transition with
the transfer function from Section 3.3 is called.

We can now state the following two theorems. The first
theorem establishes the operation running time.

Theorem 1 (SnapQueue Running Time). Let L be the length
of the segment array. The amortized running time of the
enqueue operation is O(L + f(n)

L ), where O(f(n)) is the
running time of the pushr operation of the support structure
containing n elements. The amortized running time of the
dequeue operation is O(L + g(n)

L ), where O(g(n)) is the
running time of the popl operation of the support structure
containing n elements.

The second theorem establishes the contention rate be-
tween producers and consumers as the number of operations
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def id(r: NonFrozen) = r match {184
case s: Segment => copy(s)185
case r: Root => new Root(186
new Side(false, unfreeze(r.left.segment),187
r.left.support),188

new Side(false, copy(r.right.segment),189
r.right.support))190

}191
@tailrec def snapshot() = {192

val r = READ(root)193
val nr = transition(r, id)194
if (nr == null) {195
helpTransition()196
snapshot()197

} else id(nr)198
}199

Figure 13. SnapQueue Snapshot

between writes to the root field – the higher this value, the
lower the contention. When the consumer periodically ex-
hausts the support data structure in the left Side object, the
root is frozen to call transfer. When this happens, the
producers and consumers contend. We care about this, since
typical actor systems have a single consumer and many pro-
ducers – for example, multiple producers should not be able
to flood the single consumer as a consequence of contention.

Theorem 2 (SnapQueue Contention). Let L be the length
of the segment array, O(g(n)) the running time of the
popl operation, and n the total number of elements in the
SnapQueue. In a sequence of basic operations, there are
on average O(L+ n·g(n)

L ) dequeue operations between two
root field writes (that is, between two freeze operations).

Proof. Both theorems are a consequence of Lemmas 8 and
9, and implementations in Figures 11 and 12.

3.5 Snapshot and Concatenation
The transition operation from Section 3.2 is very expres-
sive, as it atomically changes the state of the SnapQueue
given an arbitrary transformation. In this section, we use it
to implement atomic snapshots and atomic concatenation.

The snapshot method in Figure 13 uses the identity
transition function id. This method repetitively invokes the
transition operation until it becomes successful. It is easy
to see that the snapshot running time is O(L).

Next, we note that the Lemma 7 implies the following:

Lemma 10. If the value returned by the transition function
f gets written to the root field by transition, then during
the corresponding invocation of f, SnapQueue was frozen.

We rely on Lemma 10 to implement atomic concatena-
tion. To achieve atomicity, this operation must simultane-
ously freeze two SnapQueues. Note that two concatenation
operations on the same pair of SnapQueues could poten-
tially deadlock if they freeze the SnapQueues in the oppo-

@tailrec def concat(that: SnapQueue[T]) = {200
if (stamp(this) < stamp(that)) {201
val p = new Promise[NonFrozen]202
val r = READ(this.root)203
val nr = this.transition(r, rthis => {204

if (!p.isCompleted) {205
val rthat = that.snapshot()206
val res = concatenate(rthis, rthat)207
p.trySuccess(res)208

}209
id(rthis)210

})211
if (nr == null) this.concat(that)212
else new SnapQueue(p.getValue)213

} else { /* analogous */ }214
}215

Figure 14. SnapQueue Concatenation

site orders. To prevent this, we need to establish an order-
ing between SnapQueue instances – we assume that a stamp
method associates unique integers to each queue.

The SnapQueue#concat operation in Figure 14 first
calls stamp to establish the order. We assume this comes
before the argument that – the reverse case is analo-
gous. The concat method creates a new Promise ob-
ject [9], which serves as a placeholder for the resulting
SnapQueue. The Promise object is a single-assignment
variable – it can be assigned a value at most once using the
trySuccess method. After concat starts a transition on
this SnapQueue, it creates a snapshot of that SnapQueue.
At this point, we have two frozen data structures and can
concatenate them with a persistent concatenate operation
in line 207. The result is stored into the Promise in line 208.

Assume that the transition returns a non-null value.
This can only happen if some thread assigned the result
into the Promise before transition returned. That thread
called snapshot on that before writing to the Promise.
By Lemma 10, this SnapQueue was frozen at the time,
implying that the concatenation operation is atomic with
respect to both SnapQueues.

4. Support Data Structures
In Section 3, we introduced SnapQueue, which relies on a
persistent sequence data structure, called support, to store
arrays of size L. Since the running time of SnapQueue op-
erations depends on the running time of the support data
structure, SnapQueue constitutes a framework for assess-
ing different persistent data structure implementations. In
this section, we consider support structures that provide the
following operations: create, which creates an empty sup-
port structure, nonEmpty, which checks if the support struc-
ture is empty, pushr, which appends the element on the
right side, popl, which removes the leftmost element, and
concatenate, which concatenates two support structures.
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trait Conc[+T] {
def level: Int
def size: Int
def normalized = this

}

case object Empty extends Conc[Nothing] {
def level = 0
def size = 0

}

case class <>[T](left: Conc[T], right: Conc[T])
extends Conc[T] {
val level = 1 + max(left.level, right.level)
val size = left.size + right.size

}

case class Single[T](x: T) extends Conc[T] {
def level = 0
def size = 1

}

Figure 15. Conc-Tree Data Types

When choosing a data structure, we usually consider the
following properties. First, asymptotic running time with
respect to the data structure size should be as low as possible,
in the ideal case O(1). Second, constant factors must be low
to ensure good absolute running time. With high constant
factors, even an O(1) operation can be prohibitively slow for
typical data structure sizes. Finally, the data structure should
be simple – it should be easy to comprehend and implement.

Although persistent data structures with worst-case O(1)
implementations of the desired operations exist [12], their
implementations are not simple, and have high constant fac-
tors. We know from Theorem 1 that the SnapQueue opera-
tions run in O(L+ f(n)

L ) time. To optimize SnapQueues, we
must optimize L against the support structure whose pushr

and popl operations are O(1) with low constant factors.
In the rest of this section, we study Conc-Trees [17] as the

support data structure. Conc-Tree is a particular implementa-
tion of the conc-list abstraction from Fortress [5] [25], orig-
inally intended for functional task-parallel and data-parallel
programming. Conc-Tree concatenation is O(log n), but its
O(1) popl and pushr are simple and efficient.

The Conc abstract data type is shown in Figure 15. This
data type specifies the size of the tree, i.e. the number of
elements, and the level, i.e. the tree height. A Conc is either
an Empty tree, a tree with a Single element, or an inner node
<> (pronounced conc) with two subtrees. Conc defines a
method normalized, which returns the tree composed only
of these three data types.

Conc-Trees maintain the following invariants. First, the
Empty tree is never a child of other nodes. Second, the
absolute level difference of the children in <> nodes is
smaller than or equal to 1. This ensures balanced Conc-Trees
– longest and shortest paths differ by at most 2×.

implicit class ConcOps[T](xs: Conc[T]) {
def <>(ys: Conc[T]) = {
if (xs == Empty) ys
else if (ys == Empty) xs
else conc(xs.normalized, ys.normalized)

}
}
def conc[T](xs: Conc[T], ys: Conc[T]) = {
val diff = ys.level - xs.level
if (abs(diff) <= 1) new <>(xs, ys)
else if (diff < -1) {

if (xs.left.level >= xs.right.level) {
val nr = conc(xs.right, ys)
new <>(xs.left, nr)

} else {
val nrr = conc(xs.right.right, ys)
if (nrr.level == xs.level - 3) {

val nr = new <>(xs.right.left, nrr)
new <>(xs.left, nr)

} else {
val nl = new <>(xs.left, xs.right.left)
new <>(nl, nrr)

}
}

} else { /* analogous */ }
}

Figure 16. Conc-Tree Concatenation

In Figure 16, we implement concatenation for Conc-
Trees. Similar to how the symbol of the Scala :: data type
(pronounced cons) is used to prepend to a List, we borrow
the <> data type symbol for Conc concatenation. Thus, the
expression new <>(xs, ys) links the two trees xs and ys

by creating a new <> object, whereas xs <> ys creates a
balanced Conc-Tree that is a concatenation of xs and ys.

The public <> method eliminates Empty trees before call-
ing the recursive conc method. The conc method links trees
if the invariants allow it. If they do not, conc concatenates
the smaller Conc-Tree with a subtree in the bigger Conc-
Tree, before re-linking the result. The conc running time is
O(|hxs−hys|), where hxs and hys are the tree heights [17].

The <> method is sufficient for pushr:
def pushr(xs: Conc[T], x: T) = xs <> Single(x)

Unfortunately, this implementation is O(log n), and our
goal is to achieve constant time. We will next extend the
basic Conc-Tree data structure to achieve this goal.

In Figure 17, we introduce a new type Ap, which is iso-
morphic to the <> data type. The distinction with the Ap type
is that its subtrees do not need to differ in level by at most 1.
Instead, Ap introduces two new invariants. First, an Ap node
can only be the left subtree of another Ap node. Otherwise,
an Ap must be the root of the tree. Second, if an Ap node n

has a Ap node m in its left subtree, then n.right.level must
be strictly smaller than m.right.level.

As a consequence of the two Ap invariants, Conc-Trees
that contain Ap nodes correspond to to numbers in the binary
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Figure 18. Correspondence Between the Binary Number System and Conc-Trees

case class Ap[T](left: Conc[T], right: Conc[T])
extends Conc[T] {
val level = 1 + left.level.max(right.level)
val size = left.size + right.size
override def normalized = wrap(left, right)

}
def wrap[T](xs: Conc[T], ys: Conc[T]) =
xs match {
case Ap(ws, zs) => wrap(ws, zs <> ys)
case xs => xs <> ys

}

Figure 17. Conc-Tree Append Data Type

def append[T](xs: Ap[T], ys: Conc[T]) =
if (xs.right.level > ys.level) new Ap(xs, ys)
else {

val zs = new <>(xs.right, ys)
xs.left match {
case ws @ Ap(_, _) => append(ws, zs)
case ws =>
if (ws.level <= xs.level) ws <> zs
else new Ap(ws, zs)

}
}

Figure 19. Conc-Tree Append Operation

system, as shown in Figure 18. Each Ap node n corresponds
to a digit whose position is equal to the height n.right.
Absence of an Ap node with a specific height indicates the
absence of the corresponding digit.

This correspondence has two consequences. First, since
we know how to increment a binary number by adding a sin-
gle digit on the right, we can equivalently append Single

trees by linking trees of the same height together [16]. Sec-
ond, since incrementing a number in the binary number sys-
tem on average takes O(1) computational steps, appending
a Single tree also takes O(1) steps on average.

This is illustrated in Figure 18, where a Single tree is
appended to a Conc-Tree corresponding to the binary num-
ber 1011. Appending triggers a chain of carries, which stops
upon reaching 0-digit. The append method that implements
this is shown in Figure 19, and it is used to directly imple-
ment the pushr operation:
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Figure 20. 1-Thread Enqueue, L = 128

def pushr(xs: Ap[T], x: T): Ap[T] =
append(xs, Single(x))

The append implementation is similar to functional ran-
dom access lists [16]. Both achieve amortized O(1) appends
using a number system representation. However, Conc-Trees
with Ap nodes can additionally be concatenated in O(log n)
time. For this, an Ap tree must first be normalized – trans-
formed into a tree composed only of Single and <> nodes.
This is the task of the wrap method in Figure 17, which con-
catenates all the right subtrees in the append list. Since
concatenation takes O(|hxs − hys|) time, and the sum of
consecutive height differences between the right subtrees
is O(log n), the wrap method runs in O(log n) time [17].

To conclude, we defined a persistent data structure with
amortized O(1) pushr, and O(log n) concatenation. Al-
though we did not show it in this section, we can similarly
define a Prep node to obtain a O(1) popl.

5. Evaluation
In this section, we experimentally evaluate optimal seg-
ment lengths, and compare the SnapQueue against the JDK
ConcurrentLinkedQueue (CLQ) implementation based on
Michael and Scott’s concurrent queue [14]. The benchmarks
are performed on an Intel 2.8Ghz i7-4900MQ quad-core
processor with hyperthreading. We use the ScalaMeter tool
to execute our benchmarks [18], which relies on standard
JVM benchmarking methodologies [8].

The workload in the following benchmarks comprises of
either enqueuing or dequeuing size elements, spread across
some number of threads. When we study single-thread per-
formance, we vary the size on the x-axis. Otherwise, we
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Figure 21. N-Thread Enqueue, size = 500k, L = 128

2 3 4 5 6 7 8 9

·105

5

10

Size

R
un

ni
ng

Ti
m

e/
m
s

Segment
leaky SnapQ

SnapQ
CLQ

Figure 22. 1-Thread Dequeue, L = 128

vary the number of threads and keep the total number of
elements size fixed. The y-axis shows the running time.
The benchmarks test the two data structures in extreme con-
ditions. In practical applications, producers and consumers
perform some work between enqueue and dequeue calls,
but here they exclusively call queue operations.

In Figure 20, we compare the single-thread running time
of SnapQueue enqueue method against the running time of
the add method of CLQ. The enq method of the Segment

class is almost 2× smaller than that of CLQ. This speedup
is due to the extra cost of allocating a Node object that
CLQ pays when enqueuing an element. With L = 128,
SnapQueue enqueue performance is around 25% better than
CLQ – the performance loss with respect to Segment is
due to additional atomic reads of root and right fields,
intermediate method calls, and Conc-Tree manipulations.

In Figure 21, we show the same workload distributed
across P threads, where P varies from 1 to 8. This bench-
mark shows that CLQ contention is larger than SnapQueue
contention for fewer threads, but the two data structures have
similar contention at higher parallelism levels.

Next, we show single-thread dequeue performance in
Figure 22. Here, SnapQueue and CLQ have almost identical
running times – CLQ’s poll method is faster than the add

method from Figure 20, since poll does not have to allocate
any objects. Calling deq on Segment is about 15% faster.

The leaky SnapQ is a version of SnapQueue with a
slightly faster dequeue operation. In line 21 of the listing

1 2 3 4 5 6 7 8
0

20

40

60

80

Parallelism

R
un

ni
ng

Ti
m

e/
m
s

SnapQ
leaky SnapQ

CLQ

Figure 23. N-Thread Dequeue, size = 500k, L = 128
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Figure 24. 1 Producer, 1 Consumer

in Figure 4, we used an atomic WRITE operation to replace
the logically removed element with a special REMOVED value.
This ensures that the SnapQueue does not keep references to
dequeued elements in the leftmost segment, and avoids a po-
tential memory leak. The WRITE in the dequeue operation
mutates arrays that come from the support data structure.
Since arrays in the support data structure, due to operations
such as snapshot, can be shared between multiple copies
of the SnapQueue, dequeue must copy the array returned by
popl in line 161 of the listing in Figure 12.

Some applications are unaffected by memory leaks, either
because the objects are small, or because the dequeue oper-
ation is called often. In such applications, the WRITE in line
21 is unnecessary. Consequently, the copy call in line 161
can be removed. This improves performance of the dequeue
operation by about 10%, as shown in Figures 22 and 23.

In Figure 23, we show the same workload spread across
multiple threads. The contention effects are similar between
SnapQueue and CLQ when P ≤ 4. For P > 4, SnapQueue
contention-related slowdowns are larger than those of CLQ.
We believe that this is due to increased amount of allocations
that occur when multiple threads simultaneously attempt to
replace the leftmost segment after the popl in line 161.

Next, we test for contention between a single producer
and a single consumer in Figure 24. Here, the producer starts
by enqueuing size elements, and the consumer simultane-
ously dequeues them. While in this benchmark SnapQueue
shows almost the same performance as in Figure 22, CLQ
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suffers from contention. We postulate that this is because
the CLQ poll method is faster than the add method, so the
consumer repeatedly catches up with the producer, causing
contention. This effect is important only for those applica-
tions in which producers and consumers spend most of the
time invoking queue operations.

For the purposes of the last benchmark, we recall the
Theorem 1, where we established that the running time of
queue operations is bound by O(L + f(n)

L ), where L is the
segment length, and O(f(n)) is the complexity the support
data structure operations. Every queue operation can be in-
terrupted with a snapshot, in which case two segments of
length L must be copied, hence the first term. Then, after ev-
ery L operations, a segment must be pushed or popped from
the support structure, hence the second term f(n)

L . Assum-
ing that snapshots occur periodically at some rate T , the run-
ning time becomes O(LT + f(n)

L ). Optimizing the SnapQueue
amounts to optimizing this expression for some period T .

Figure 25 shows the dependency between the running
time of the enqueue method and the SnapQueue segment
length for different choices of the period T . For T = ∞,
that is, when snapshots do not occur, the first term becomes
0 and the corresponding curve converges around L = 50,
but has no optimum. For other values of T , the optimum
value appears somewhere between L = 64 and L = 128.
For T = 3, that is, when snapshots occur very frequently,
the first term becomes dominant and the optimum shifts to
around L = 64. Based on these results, the recommended
SnapQueue Segment length is 64 for most applications.

6. Related Work
Lock-free concurrent data structures are an active area of
research, and there exist extensive concurrent data structure
overviews [10] [15]. Here we focus on the related concurrent
queues and data structures with snapshots.

Original lock-free concurrent queues allocate a separate
node per each enqueued object [14]. SnapQueue avoids this
by allocating a chunk of memory (segment), and stores the
objects within. As a result, SnapQueue has decreased mem-
ory footprint compared to traditional lock-free queues.

The single-shot lock-free queue is similar to the FlowPool
data structure [20], which also allocates memory chunks
instead of single nodes per element. FlowPool basic op-
erations use two CAS operations instead of one, and are
more complex. FlowPools can also reduce contention at
the cost of weakened ordering guarantees [23], but do not
have atomic snapshots. Disruptor [27] is bounded concur-
rent ring-buffer data structure designed to serve as a high-
performance buffer. Its memory is also allocated in chunks
for better cache locality, and decreased memory footprint.

Some concurrent data structures have in the past provided
efficient snapshots. SnapTree [6] is a concurrent AVL tree
that provides a fast clone operation and consistent iteration.
Ctrie [19] [20] is a concurrent hash trie implementation with
constant time atomic lazy snapshots, atomic clear operation
and consistent iteration. Similar to how SnapQueue uses a
persistent data structure to efficiently switch between global
states, Ctrie relies on a persistent data structure to implement
its lazy snapshot operation. A different approach in the past
was to provide a general framework for snapshots [4] –
although this is a general lock-free snapshot technique, these
snapshots are generally O(n) in the size of the data structure.

An extensive overview of traditional persistent data struc-
ture design techniques is given by Okasaki [16]. Binary
number representation used by Conc-Trees is inspired by
random access lists, which represent data as a list of com-
plete binary trees. In this regard, Conc-Trees are unlike most
traditional immutable sequence data structures, where every
binary digit of weight W corresponds to a complete tree with
W elements, but instead rely on relaxed balancing typically
used in AVL trees [3]. This combination of features allow
Conc-Trees to retain logarithmic concatentation along with
amortized constant time prepend and append operations.

Conc-list abstraction appeared in Fortress [5], where it
was used for task-parallel programs [25]. More advanced
Conc-Tree variants achieve worst-case O(1) prepend and
append [17], but are more complicated. Some persistent trees
achieve amortized O(1) [11] and worst-case [12] O(1) con-
catenation, at the cost of high implementation complexity.

7. Conclusion
We presented the SnapQueue data structure – a lock-free,
concurrent queue implementation with atomic global transi-
tion operation. This transition operation is the building block
for enqueue and dequeue operations, as well as atomic snap-
shots and concatenation. We note that transition operation
is not limited to these applications, but can be used for e.g.
atomic clear, size retrieval or a reverse operation. SnapQueue
stores its state in a persistent support data structure, and the
transition operation leverages this to improve performance.

Although we did not explicitly show lock-freedom, we
note that lock-freedom can be easily proved by showing that
each failing CAS implies the success of another concurrent
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operation, and that each state change is a finite number of
instructions apart.

We analyzed the running time and contention. This anal-
ysis shed light on several important design ideas. First, the
contention between the producers and the consumers is an
inverse function of the number of elements in the queue. Sec-
ond, the cost of periodic segment reallocation is amortized
by the segment length L – optimizing the SnapQueue is a
matter of finding the optimal value for L. Third, SnapQueue
performance depends on the underlying persistent support
structure. We described Conc-Trees as a concrete support
data structure example with O(1) prepend and append, and
O(log n) concatenation.

Most importantly, we showed that SnapQueue does not
incur any performance penalties by having atomic snapshot
operations. SnapQueue has similar, and in some cases better,
performance compared to other concurrent queues.

This paper revealed several benefits of using persistent
data structures when implementing global-state operations.
We saw that, in conjunction with an atomic snapshot, it
is sufficient to piggy-back the support structure to achieve
the desired running time. This indicates that persistent data
structures are not relevant only for functional programming,
but also crucial for concurrent data structure design.
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